At any given time, a subatomic particle can be in one of two states, and it moves randomly from one state to another when it is excited. If it is in state 1 on one observation, then it is 2 times as likely to be in state 1 as state 2 on the next observation. Likewise, if it is in the state 2 on one observation, then it is 2 as likely to be in the state 2 as state 1 on the next observation. 1. Find the transition matrix for this Markov chain. 2. Researchers estimate that the particle is currently times as like to be in state 1 as state 2. Find the probability vector representing this estimation. 3. Based on this estimation, what is the probability that the particle will be in state 2 two weeks from now? 4. What is the probability that the particle will be in the state 1 three weeks from now?
At any given time, a subatomic particle can be in one of two states, and it moves randomly from one state to another when it is excited. If it is in state 1 on one observation, then it is 2 times as likely to be in state 1 as state 2 on the next observation. Likewise, if it is in the state 2 on one observation, then it is 2 as likely to be in the state 2 as state 1 on the next observation. 1. Find the transition matrix for this Markov chain. 2. Researchers estimate that the particle is currently times as like to be in state 1 as state 2. Find the probability vector representing this estimation. 3. Based on this estimation, what is the probability that the particle will be in state 2 two weeks from now? 4. What is the probability that the particle will be in the state 1 three weeks from now?
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Please answer all subparts only correct.
I asked this question already but someone give me incorrect answer.
![At any given time, a subatomic particle can be in one of two states, and it moves randomly from one state to another when it is excited. If it is in state 1 on one observation, then it is 2 times as likely to be in state 1 as state 2 on the next observation.
Likewise, if it is in the state 2 on one observation, then it is 2 as likely to be in the state 2 as state 1 on the next observation.
1. Find the transition matrix for this Markov chain.
2. Researchers estimate that the particle is currently 5 times as like to be in state 1 as state 2. Find the probability vector representing this estimation.
3. Based on this estimation, what is the probability that the particle will be in state 2 two weeks from now?
4. What is the probability that the particle will be in the state 1 three weeks from now?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffde8eb56-498e-4c1b-bbe7-9b5745d748fc%2Fb02fc0bf-cf32-456a-b504-47d52a82df3b%2Fis6ukbb_processed.jpeg&w=3840&q=75)
Transcribed Image Text:At any given time, a subatomic particle can be in one of two states, and it moves randomly from one state to another when it is excited. If it is in state 1 on one observation, then it is 2 times as likely to be in state 1 as state 2 on the next observation.
Likewise, if it is in the state 2 on one observation, then it is 2 as likely to be in the state 2 as state 1 on the next observation.
1. Find the transition matrix for this Markov chain.
2. Researchers estimate that the particle is currently 5 times as like to be in state 1 as state 2. Find the probability vector representing this estimation.
3. Based on this estimation, what is the probability that the particle will be in state 2 two weeks from now?
4. What is the probability that the particle will be in the state 1 three weeks from now?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)