At a police station in a large city, calls come in at an average rate of four calls per minute. Assume that the time that elapses from one call to the next has the exponential distribution. Take note that we are concerned only with the rate at which calls come in, and we are ignoring the time spent on the phone. We must also assume that the times spent between calls are independent. This means that a particularly long delay between two calls does not mean that there will be a shorter waiting period for the next call. We may then deduce that the total number of calls received during a time period has the Poisson distribution. a. Find the average time between two successive calls. b. Find the probability that after a call is received, the next call occurs in less than ten seconds.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
At a police station in a large city, calls come in at an average rate of four calls per minute. Assume that the time
that elapses from one call to the next has the exponential distribution. Take note that we are concerned only with
the rate at which calls come in, and we are ignoring the time spent on the phone. We must also assume that the
times spent between calls are independent. This means that a particularly long delay between two calls does not
mean that there will be a shorter waiting period for the next call. We may then deduce that the total number of
calls received during a time period has the Poisson distribution.
a. Find the average time between two successive calls.
b. Find the probability that after a call is received, the next call occurs in less than ten seconds.
Transcribed Image Text:At a police station in a large city, calls come in at an average rate of four calls per minute. Assume that the time that elapses from one call to the next has the exponential distribution. Take note that we are concerned only with the rate at which calls come in, and we are ignoring the time spent on the phone. We must also assume that the times spent between calls are independent. This means that a particularly long delay between two calls does not mean that there will be a shorter waiting period for the next call. We may then deduce that the total number of calls received during a time period has the Poisson distribution. a. Find the average time between two successive calls. b. Find the probability that after a call is received, the next call occurs in less than ten seconds.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON