At a given location, the net radiation was 205 W/m², the air temperature was 25°C, and the wind velocity at 2 m height was 2.0 m/s, relative humidity is 75%, roughness height is 0.5 cm. Use density of water = 999 kg/m³ and psychrometric constant = 66.8 Pa/°C. Use energy balance method, aerodynamic method, and combined method to determine the evaporation rate (in mm/day). Using Energy Balance Method in mm/day Round to two (2) decimal places Add your answer
At a given location, the net radiation was 205 W/m², the air temperature was 25°C, and the wind velocity at 2 m height was 2.0 m/s, relative humidity is 75%, roughness height is 0.5 cm. Use density of water = 999 kg/m³ and psychrometric constant = 66.8 Pa/°C. Use energy balance method, aerodynamic method, and combined method to determine the evaporation rate (in mm/day). Using Energy Balance Method in mm/day Round to two (2) decimal places Add your answer
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
![At a given location, the net radiation was 205 W/m², the air temperature was 25°C, and the wind velocity at 2 m height was 2.0 m/s,
relative humidity is 75%, roughness height is 0.5 cm. Use density of water = 999 kg/m³ and psychrometric constant = 66.8 Pa/°C. Use
energy balance method, aerodynamic method, and combined method to determine the evaporation rate (in mm/day).
Using Energy Balance Method in mm/day
Round to two (2) decimal places
Add your answer](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9666b966-f1db-4d83-95d1-a20e3a40e072%2F59d42f94-aa5a-401e-8220-d6f8c8834892%2F91shtn5_processed.jpeg&w=3840&q=75)
Transcribed Image Text:At a given location, the net radiation was 205 W/m², the air temperature was 25°C, and the wind velocity at 2 m height was 2.0 m/s,
relative humidity is 75%, roughness height is 0.5 cm. Use density of water = 999 kg/m³ and psychrometric constant = 66.8 Pa/°C. Use
energy balance method, aerodynamic method, and combined method to determine the evaporation rate (in mm/day).
Using Energy Balance Method in mm/day
Round to two (2) decimal places
Add your answer
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Structural Analysis](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781337630931/9781337630931_smallCoverImage.jpg)
![Structural Analysis (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134610672/9780134610672_smallCoverImage.gif)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Principles of Foundation Engineering (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337705028/9781337705028_smallCoverImage.gif)
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
![Fundamentals of Structural Analysis](https://www.bartleby.com/isbn_cover_images/9780073398006/9780073398006_smallCoverImage.gif)
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
![Sustainable Energy](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Traffic and Highway Engineering](https://www.bartleby.com/isbn_cover_images/9781305156241/9781305156241_smallCoverImage.jpg)
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning