ASTU and AQRU are equilateral. Complete the proof that ARSU - AQTU. R Statement Reason ASTU is equilateral AAS 2 AQRU is equilateral Additive Property of Length All right angles are congruent Alternate Interior Angles Theorem SU TU ASA QU E RU COCTO ZQUT LRUS ARSU AQTU 5.
ASTU and AQRU are equilateral. Complete the proof that ARSU - AQTU. R Statement Reason ASTU is equilateral AAS 2 AQRU is equilateral Additive Property of Length All right angles are congruent Alternate Interior Angles Theorem SU TU ASA QU E RU COCTO ZQUT LRUS ARSU AQTU 5.
Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
Related questions
Question
100%
CPCTC, definition of angle bisector, definition of congruence, definition of equilateral triangle , definition of midpoint, given, reflexive property of congruence, reflexive property of equality, SAS, SSS, substitution, transitive property of congruence, transitive property of equality, vertical angle theorem
![ASTU and AQRU are equilateral. Complete the proof that ARSU - AQTU.
U
Statement
Reason
ASTU is equilateral
AQRU is equilateral
3
SU TU
4
QU RU
5.
ZQUT ZRUS
ARSU AQTU
2.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F03e7e6fa-13c9-4d1b-91d4-ec894ab5051f%2Fbd0f562a-b5e3-4e7e-aa5b-3d7318a1e93f%2Fnx7f9d_processed.jpeg&w=3840&q=75)
Transcribed Image Text:ASTU and AQRU are equilateral. Complete the proof that ARSU - AQTU.
U
Statement
Reason
ASTU is equilateral
AQRU is equilateral
3
SU TU
4
QU RU
5.
ZQUT ZRUS
ARSU AQTU
2.
![ASTU and AQRU are equilateral. Complete the proof that ARSU = AQTU.
R
Statement
Reason
ASTU is equilateral
AAS
2
AQRU is equilateral
Additive Property of Length
All right angles are congruent
Alternate Interior Angles Theorem
SU TU
ASA
QU E RU
COCTO
ZQUT LRUS
ARSU AQTU
5.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F03e7e6fa-13c9-4d1b-91d4-ec894ab5051f%2Fbd0f562a-b5e3-4e7e-aa5b-3d7318a1e93f%2Fcozr08o_processed.jpeg&w=3840&q=75)
Transcribed Image Text:ASTU and AQRU are equilateral. Complete the proof that ARSU = AQTU.
R
Statement
Reason
ASTU is equilateral
AAS
2
AQRU is equilateral
Additive Property of Length
All right angles are congruent
Alternate Interior Angles Theorem
SU TU
ASA
QU E RU
COCTO
ZQUT LRUS
ARSU AQTU
5.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning