Astronauts observing from a space station need a telescope with a resolving power of 0.9 arc seconds at a wavelength of 540 nm and a magnifying power of 260. Design a telescope to meet their needs. (State the necessary primary diameter of the telescope, in m, and the ratio of the focal lengths below. Also, what will its light-gathering power be, compared with a dark adapted human eye? (Assume that the pupil of your eye can open to a diameter of about 0.8 cm in dark conditions.)
Astronauts observing from a space station need a telescope with a resolving power of 0.9 arc seconds at a wavelength of 540 nm and a magnifying power of 260. Design a telescope to meet their needs. (State the necessary primary diameter of the telescope, in m, and the ratio of the focal lengths below. Also, what will its light-gathering power be, compared with a dark adapted human eye? (Assume that the pupil of your eye can open to a diameter of about 0.8 cm in dark conditions.)
Related questions
Question
Astronauts observing from a space station need a telescope with a resolving power of 0.9 arc seconds at a wavelength of 540 nm and a magnifying power of 260. Design a telescope to meet their needs. (State the necessary primary diameter of the telescope, in m, and the ratio of the focal lengths below. Also, what will its light-gathering power be, compared with a dark adapted human eye? (Assume that the pupil of your eye can open to a diameter of about 0.8 cm in dark conditions.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images