Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 48 cm and holds it in position with a force of 163 N. If the mass of the arrow is 51 g and the "spring" is massless, what is the speed of the arrow immediately after it leaves the bow?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 48 cm and holds it in position with a force of 163 N. If the mass of the arrow is 51 g and the "spring" is massless, what is the speed of the arrow immediately after it leaves the bow?

v=v=  m/s

A boy throws a ball of mass 0.2 kg straight upward with an initial speed of 22 m/s When the ball returns to the boy, its speed is 17 m/s How much work does air resistance do on the ball during its flight?

W=W= J (give the absolute value, rounded to one decimal place)

**Problem Statement:**

A boy throws a ball of mass 0.2 kg straight upward with an initial speed of 22 m/s. When the ball returns to the boy, its speed is 17 m/s. How much work does air resistance do on the ball during its flight?

**Equation:**

\[ W = \_\_\_\_ \, \text{J} \] 
(give the absolute value, rounded to one decimal place)
Transcribed Image Text:**Problem Statement:** A boy throws a ball of mass 0.2 kg straight upward with an initial speed of 22 m/s. When the ball returns to the boy, its speed is 17 m/s. How much work does air resistance do on the ball during its flight? **Equation:** \[ W = \_\_\_\_ \, \text{J} \] (give the absolute value, rounded to one decimal place)
**Problem Statement:**

Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 48 cm and holds it in position with a force of 163 N. If the mass of the arrow is 51 g and the "spring" is massless, what is the speed of the arrow immediately after it leaves the bow?

\[ v = \boxed{} \, \text{m/s} \]
Transcribed Image Text:**Problem Statement:** Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 48 cm and holds it in position with a force of 163 N. If the mass of the arrow is 51 g and the "spring" is massless, what is the speed of the arrow immediately after it leaves the bow? \[ v = \boxed{} \, \text{m/s} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Conservation of energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON