Assume that random guesses are made for 6 multiple-choice questions on a test with 5 choices for each question, so that there are n = 6 trials, each with probability of success (correct) given by p=0.20. Find the probability of no correct answers. Click on the icon to view the binomial probability table. The probability of no correct answers is (Round to three decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
n
2
3
4
5
6
7
8
n
0
1
2
0
1
2
3
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
X
Binomial Probabilities
+ + + 2 § 2 § tt § § § ± ± ± ± ± ± ± 5
.05
902
.095
.002
.857
.135
.007
0+
815
.171
014
0+
0+
.774
204
021
.001
0+
0+
.735
232
031
002
0+
0+
0+
.698
257
041
004
0+
0+
0+
0+
.663
279
.051
.005
0+
0+
0+
0+
0+
.05
.10
.20
.810 .640
.180
320
.010
.040
729
.243
.027
.001
.656
292
049
004
0+
590
328
073
.008
0+
0+
531
354
098
.015
.001
0+
0+
478
372
.124
.023
.003
0+
0+
0+
430
383
.149
.033
.005
0+
0+
0+
0+
.10
512
384
.096
.008
.410
.410
.154
.026
.002
328
.410
.205
.061
.006
0+
262
393
.246
.082
.015
.002
0+
210
.367
275
.115
.029
.004
0+
0+
.168
.336
294
147
.046
.009
.001
0+
0+
.20
30
490
420
.090
343
441
.189
.027
.240
412
.265
.076
.008
168
360
.309
.132
.028
.002
.118
303
324
.185
.060
.010
.001
.082
.247
.318
.227
.097
.025
.004
0+
.058
.198
296
.254
.136
.047
.010
.001
0+
.30
.40
.360
480
.160
216
432
288
.064
.130
.346
346
154
026
.028
.131
.261
290
.194
077
017
.002
.017
.090
209
.279
50
.250
.500
.250
.078
.259
.346
230
077
.010
.047
.187
.311
.234
.276 .312
.138
.234
.037
.094
.004
.016
.232
124
.041
.008
.001
.40
.125
375
.375
.125
.062
.250
.375
.250
.062
.031
.156
.312
.312
156
.031
.016
.094
.008
.055
.164
273
.273
164
055
.008
.004
.031
.109
.219
.273
.219
.109
.031
.004
.50
P
.60
.160
480
.360
.064
.288
432
.216
.026
.154
.346
346
.130
.010
.077
.230
.346
.259
.078
.004
.037
.138
.276
311
.187
.047
.002
.017
.077
194
.290
.261
.131
.028
.001
.008
.041
.124
.232
.279
.209
.090
.017
.60
.70
.090
420
490
027
.189
.441
343
.008
076
265
412
240
.002
028
.132
309
360
.168
.001
.010
.060
.185
324
303
.118
0+
004
025
.097
227
318
247
.082
0+
.001
.010
.047
.136
254
296
.198
058
.70
.80
040
320
.640
008
096
384
512
.002
026
154
410
410
0+
006
051
205
410
328
0+
002
015
082
246
393
262
0+
0+
.004
029
.115
275
367
210
0+
0+
.001
009
046
.147
294
336
168
.80
.90
.010
.180
810
.001
027
243
.729
0+
.004
049
292
656
0+
0+
0+
.003
023
.95
002
.095
902
0+
0+
0+
0+
.008 .001
.073
.021
328
204
774
.124
372
0+
007
.135
.857
590
0+
0+
0+
0+
.001
0+
.015 .002
.098
031
354
531
478
0+
0+
0+
0+
.005
033
149
383
430
.90
0+
0+
014
171
.815
232
.735
0+
0+
0+
0+
004
041
257
698
0+
0+
0+
0+
0+
.005
.061
279
.663
.95
8 + 8 + + + + + + + § 5 ± ± ± ± § § § ± ± ± ± ± ± ± ± ± ± ± 8 8 8 8
X
0
1
2
0
1
2
3
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
X
n
THEU
2
3
5
7
|||||||
n
Transcribed Image Text:n 2 3 4 5 6 7 8 n 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 X Binomial Probabilities + + + 2 § 2 § tt § § § ± ± ± ± ± ± ± 5 .05 902 .095 .002 .857 .135 .007 0+ 815 .171 014 0+ 0+ .774 204 021 .001 0+ 0+ .735 232 031 002 0+ 0+ 0+ .698 257 041 004 0+ 0+ 0+ 0+ .663 279 .051 .005 0+ 0+ 0+ 0+ 0+ .05 .10 .20 .810 .640 .180 320 .010 .040 729 .243 .027 .001 .656 292 049 004 0+ 590 328 073 .008 0+ 0+ 531 354 098 .015 .001 0+ 0+ 478 372 .124 .023 .003 0+ 0+ 0+ 430 383 .149 .033 .005 0+ 0+ 0+ 0+ .10 512 384 .096 .008 .410 .410 .154 .026 .002 328 .410 .205 .061 .006 0+ 262 393 .246 .082 .015 .002 0+ 210 .367 275 .115 .029 .004 0+ 0+ .168 .336 294 147 .046 .009 .001 0+ 0+ .20 30 490 420 .090 343 441 .189 .027 .240 412 .265 .076 .008 168 360 .309 .132 .028 .002 .118 303 324 .185 .060 .010 .001 .082 .247 .318 .227 .097 .025 .004 0+ .058 .198 296 .254 .136 .047 .010 .001 0+ .30 .40 .360 480 .160 216 432 288 .064 .130 .346 346 154 026 .028 .131 .261 290 .194 077 017 .002 .017 .090 209 .279 50 .250 .500 .250 .078 .259 .346 230 077 .010 .047 .187 .311 .234 .276 .312 .138 .234 .037 .094 .004 .016 .232 124 .041 .008 .001 .40 .125 375 .375 .125 .062 .250 .375 .250 .062 .031 .156 .312 .312 156 .031 .016 .094 .008 .055 .164 273 .273 164 055 .008 .004 .031 .109 .219 .273 .219 .109 .031 .004 .50 P .60 .160 480 .360 .064 .288 432 .216 .026 .154 .346 346 .130 .010 .077 .230 .346 .259 .078 .004 .037 .138 .276 311 .187 .047 .002 .017 .077 194 .290 .261 .131 .028 .001 .008 .041 .124 .232 .279 .209 .090 .017 .60 .70 .090 420 490 027 .189 .441 343 .008 076 265 412 240 .002 028 .132 309 360 .168 .001 .010 .060 .185 324 303 .118 0+ 004 025 .097 227 318 247 .082 0+ .001 .010 .047 .136 254 296 .198 058 .70 .80 040 320 .640 008 096 384 512 .002 026 154 410 410 0+ 006 051 205 410 328 0+ 002 015 082 246 393 262 0+ 0+ .004 029 .115 275 367 210 0+ 0+ .001 009 046 .147 294 336 168 .80 .90 .010 .180 810 .001 027 243 .729 0+ .004 049 292 656 0+ 0+ 0+ .003 023 .95 002 .095 902 0+ 0+ 0+ 0+ .008 .001 .073 .021 328 204 774 .124 372 0+ 007 .135 .857 590 0+ 0+ 0+ 0+ .001 0+ .015 .002 .098 031 354 531 478 0+ 0+ 0+ 0+ .005 033 149 383 430 .90 0+ 0+ 014 171 .815 232 .735 0+ 0+ 0+ 0+ 004 041 257 698 0+ 0+ 0+ 0+ 0+ .005 .061 279 .663 .95 8 + 8 + + + + + + + § 5 ± ± ± ± § § § ± ± ± ± ± ± ± ± ± ± ± 8 8 8 8 X 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 X n THEU 2 3 5 7 ||||||| n
Assume that random guesses are made for 6 multiple-choice questions on a test with 5 choices for each question, so that there are n = 6 trials, each with probability of success (correct)
given by p = 0.20. Find the probability of no correct answers.
Click on the icon to view the binomial probability table.
The probability of no correct answers is
(Round to three decimal places as needed.)
Transcribed Image Text:Assume that random guesses are made for 6 multiple-choice questions on a test with 5 choices for each question, so that there are n = 6 trials, each with probability of success (correct) given by p = 0.20. Find the probability of no correct answers. Click on the icon to view the binomial probability table. The probability of no correct answers is (Round to three decimal places as needed.)
Expert Solution
Step 1: Given information

We have given a problem of the binomial distribution.

The probability of success (correct), p = 0.20

We have given that random guesses are made for 6 MCQs on a test with 5 choices for each question.

No. of trial, n = 6

Let, X = number of correct answers

The probability of k success out of n trial is given by

P left parenthesis X equals k right parenthesis equals open parentheses table row n row k end table close parentheses cross times p to the power of k cross times open parentheses 1 minus p close parentheses to the power of n minus k end exponent

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman