Assume that I and M are real numbers such that lim_f(x) = L and lim_g(x) = M. Let c be x→a x→a a constant. Then, each of the following statements holds Which of the following limit law statements is incorrect? ƒ(x))” ○ lim (f(x))" x→a lim ○ lim (f(x) + g(x)) x→a x→a = lim f(x) g(x) x→a = ○ lim (f(x) · g(x)) x→a lim f(x) x → a lim g(x) x→a = lim f(x) + lim_g(x) = L + M x→a x → a = L. M L" for every positive integer n lim f(x) lim_ g(x) = L · M x→a x→a .
Assume that I and M are real numbers such that lim_f(x) = L and lim_g(x) = M. Let c be x→a x→a a constant. Then, each of the following statements holds Which of the following limit law statements is incorrect? ƒ(x))” ○ lim (f(x))" x→a lim ○ lim (f(x) + g(x)) x→a x→a = lim f(x) g(x) x→a = ○ lim (f(x) · g(x)) x→a lim f(x) x → a lim g(x) x→a = lim f(x) + lim_g(x) = L + M x→a x → a = L. M L" for every positive integer n lim f(x) lim_ g(x) = L · M x→a x→a .
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
![Assume that \( L \) and \( M \) are real numbers such that
\[
\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M.
\]
Let \( c \) be a constant. Then, each of the following statements holds:
**Which of the following limit law statements is incorrect?**
1. \(\circ\) \(\lim_{x \to a} \left( f(x) \right)^n = \left( \lim_{x \to a} f(x) \right)^n = L^n\) for every positive integer \( n \).
2. \(\circ\) \(\lim_{x \to a} \left( f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M\).
3. \(\circ\) \(\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = L \cdot M\).
4. \(\circ\) \(\lim_{x \to a} \left( f(x) \cdot g(x) \right) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe4962ae7-1cb2-4276-8f6a-b9f851b67289%2F9e16dc4d-c24d-40ea-b5fd-570ea9c1075f%2Flggldk_processed.png&w=3840&q=75)
Transcribed Image Text:Assume that \( L \) and \( M \) are real numbers such that
\[
\lim_{x \to a} f(x) = L \quad \text{and} \quad \lim_{x \to a} g(x) = M.
\]
Let \( c \) be a constant. Then, each of the following statements holds:
**Which of the following limit law statements is incorrect?**
1. \(\circ\) \(\lim_{x \to a} \left( f(x) \right)^n = \left( \lim_{x \to a} f(x) \right)^n = L^n\) for every positive integer \( n \).
2. \(\circ\) \(\lim_{x \to a} \left( f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M\).
3. \(\circ\) \(\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = L \cdot M\).
4. \(\circ\) \(\lim_{x \to a} \left( f(x) \cdot g(x) \right) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = L \cdot M\).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning