Assume that adults have IQ scores that are normally distributed with a mean of p= 105 and a standard deviation o = 15. Find the probability that a randomly selected adult has an IQ between and 116 Click to viewpage 1 of the table. Click to view page 2 of the table. ....E Tho prohnbility that a randomly selected adult has an 10 between 94 and 116 is

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Need help with statistics review question

Assume that adults have IQ scores that are normally distributed with a mean of p= 105 and a
standard deviation o = 15. Find the probability that a randomly selected adult has an 1Q between 94
and 116.
Click to view page 1 of the table. Click to view page 2 of the table.
The probability that a randomly selected adult has an 1Q between 94 and 116 is
(Type an integer or decimal rounded to four decimal places as needed.)
Transcribed Image Text:Assume that adults have IQ scores that are normally distributed with a mean of p= 105 and a standard deviation o = 15. Find the probability that a randomly selected adult has an 1Q between 94 and 116. Click to view page 1 of the table. Click to view page 2 of the table. The probability that a randomly selected adult has an 1Q between 94 and 116 is (Type an integer or decimal rounded to four decimal places as needed.)
Standard Normal Table (Page 1)
Standard Normal Table (Page 2)
NEGATIVE z Scores
POSITIVE z Scores
Standard Normal (z) Distribution: Cumulative Area from the LEFT
Standard Normal (z) Distribution: Curnulative Area from the LEFT
03
.04
.05
06
07
08
02
03
04
05
06
07
09
-3.50
5239
5279
5675
6064
6443
6808
7157
7486
7794
B078
8340
a577
8790
5559
5753
6141
6517
6879
7224
7549
17852
8133
8389
8621
8830
9015
9177
3319
9441
9545
9633
9706
$120
S199
5319
5714
6103
6480
6844
7190
7517
7823
BI06
8365
8593
aato
0.0
and
5636
9655
6026
5478
3557
lower
0001
5910
6293
5948
6551
5987
6368
6736
7088
7422
7754
5795
5852
-34
0003
0004
0003
0003
0004
0003
0003
0004
0005
0003
6255
6628
6406
6772
723
7454
7764
BOST
8315
8554
8770
8962
9131
9279
9406
0002
0004
0004
0004
0007
0010
0006
0005
0005
6995
7019
-31
D009
0009
DO08
0008
001
0007
0007
7257
9291
7524
642
-30
0013
o013
BLOOT
0018
oon
O015
O01
O015
0021
O010
7673
-2.9
0017
0023
O016
0023
O014
O019
0026
0036
0048
0064
0084
.0016
O014
0020
1967
B023
o026
0035
0025
D034
0024
0033
0022
0021
A269
0031
0041
0055
0029
0028
0027
AS31
8749
-26
-25
-24
0047
0045
0044
0059
0078
o102
0132
0170
0217
0274
0344
0427
0526
643
0778
0043
0057
0040
0054
0039
0037
0049
.0066
0087
4708
0062
0082
0107
0139
0179
O052
8849
Ga69
8925
0071
0094
0075
0073
6600
0096
0069
0091
0068
9162
9306
9429
9535
9625
9693 9699
9761
9812
9854
9887
9913
9934
9951
9963
9973
9980
9986
9147
9292
9418
9082
0104
o136
0174
10222
O089
9222
9251
9382
9495
9591
9671
9236
0125
0162
0207
0262
0129
O119
O16
O113
0122
0158
0202
0110
9370
0146
0166
0212
0268
0336
0154
0197
0143
0183
0233
0150
9474
9575
9656
9505
4.19599
9678
9525
9616
9463
0192
0244
0228
0188
0281
0351
0436
os37
0655
0793
9564
9649
9719
9778
0239
0267
0359
0446
0548
0668
0808
0968
7151
1357
1587
1841
2119
2420
2245
.0256
0322
0401
•0495
0250
0307
0384
0475
O582
0708
OB53
1020
0301
0375
0465
0571
0694
OB38
9641
9713
9772
9686
9750
9603
9846
9881
0314
0392
9724
9756
9808
9767
.9817
,9857
0418
0409
0367
9783
9788
9834
9793
9858
9875
9798
0516
0630
0764
0485
0594
0455
0559
0681
0825
logas
-16
-15
OS05
¥826
0606
0735
0885
1056
1251
9864
9868
9898
9871
9878
9884
0721
O869
038
1250
446
685
0749
9916
9936
9952
9964
0951
0934
0901
3920
9927
9945
9959
19969
9966
9925
9929
9946
9960
9931
9948
9961
9971
3979
9965
9989
9932
9949
9962
9972
J075
19941
190
3401
1635
T170
1579
1335
1292
7271
1210
2.6
9955
9966
9975
9982
1514
1469
171
1977
2266
2578
9956
9967
9976
9982
1423
1562
1814
2090
492
1756
1515
1762
9977
9077
9983
9988
9981
9986
9990
9993
9995
9978
1867
IZ148
2451
2776
3121
3483
9979
9985
9989
9992
9995
9996
9997
2061
2033
1922
T894
2236
2546
2206
2514
2843
S192
3557
2177
2483
2810
3156
13520
2:527
2643
2296
261
(866
9987
9991
-07
50
9989
9992
2626
3015
3372
3745
4129
4522,
9990
9993
9995
9996
9997
2709
1666
9994
9990
991
9993
9995
9992
9992
9994
9996
3085
13050
2981
2946
2912
2877
9993
9994
9995
9994
9994
-04
-0.3
-0.2
3409
S785
4168
14562
3336
3264
5228
33
9495
9996
9996
9997
9996
9997
3669
3632
4013
4404
3.4
3821
4207
4602
9997
9999
9997
9997
9997
3974
3956
3897
3.50
nd up
4052
4483
4443
4364
4325
4286
4247
-0.0
4960
4920
4880
4840
14801
4761
4721
4681
4641
NOTE: For values of z above 3.49, use 0.9993 for the area,
Use these common values that result rom interpolation
Common Critical Valus
Confidence Critical
NOTE: For values of z below-349 use O0001 for the rea.
"Use these common valuesthat result from interpolat on
Level
Value
Area
0.9500
0.9950
1645
0.90
1645
Area
0.0500
0.0050
2 Score
2575
0.95
196
-1645
0.99
2575
-2575
8882
Transcribed Image Text:Standard Normal Table (Page 1) Standard Normal Table (Page 2) NEGATIVE z Scores POSITIVE z Scores Standard Normal (z) Distribution: Cumulative Area from the LEFT Standard Normal (z) Distribution: Curnulative Area from the LEFT 03 .04 .05 06 07 08 02 03 04 05 06 07 09 -3.50 5239 5279 5675 6064 6443 6808 7157 7486 7794 B078 8340 a577 8790 5559 5753 6141 6517 6879 7224 7549 17852 8133 8389 8621 8830 9015 9177 3319 9441 9545 9633 9706 $120 S199 5319 5714 6103 6480 6844 7190 7517 7823 BI06 8365 8593 aato 0.0 and 5636 9655 6026 5478 3557 lower 0001 5910 6293 5948 6551 5987 6368 6736 7088 7422 7754 5795 5852 -34 0003 0004 0003 0003 0004 0003 0003 0004 0005 0003 6255 6628 6406 6772 723 7454 7764 BOST 8315 8554 8770 8962 9131 9279 9406 0002 0004 0004 0004 0007 0010 0006 0005 0005 6995 7019 -31 D009 0009 DO08 0008 001 0007 0007 7257 9291 7524 642 -30 0013 o013 BLOOT 0018 oon O015 O01 O015 0021 O010 7673 -2.9 0017 0023 O016 0023 O014 O019 0026 0036 0048 0064 0084 .0016 O014 0020 1967 B023 o026 0035 0025 D034 0024 0033 0022 0021 A269 0031 0041 0055 0029 0028 0027 AS31 8749 -26 -25 -24 0047 0045 0044 0059 0078 o102 0132 0170 0217 0274 0344 0427 0526 643 0778 0043 0057 0040 0054 0039 0037 0049 .0066 0087 4708 0062 0082 0107 0139 0179 O052 8849 Ga69 8925 0071 0094 0075 0073 6600 0096 0069 0091 0068 9162 9306 9429 9535 9625 9693 9699 9761 9812 9854 9887 9913 9934 9951 9963 9973 9980 9986 9147 9292 9418 9082 0104 o136 0174 10222 O089 9222 9251 9382 9495 9591 9671 9236 0125 0162 0207 0262 0129 O119 O16 O113 0122 0158 0202 0110 9370 0146 0166 0212 0268 0336 0154 0197 0143 0183 0233 0150 9474 9575 9656 9505 4.19599 9678 9525 9616 9463 0192 0244 0228 0188 0281 0351 0436 os37 0655 0793 9564 9649 9719 9778 0239 0267 0359 0446 0548 0668 0808 0968 7151 1357 1587 1841 2119 2420 2245 .0256 0322 0401 •0495 0250 0307 0384 0475 O582 0708 OB53 1020 0301 0375 0465 0571 0694 OB38 9641 9713 9772 9686 9750 9603 9846 9881 0314 0392 9724 9756 9808 9767 .9817 ,9857 0418 0409 0367 9783 9788 9834 9793 9858 9875 9798 0516 0630 0764 0485 0594 0455 0559 0681 0825 logas -16 -15 OS05 ¥826 0606 0735 0885 1056 1251 9864 9868 9898 9871 9878 9884 0721 O869 038 1250 446 685 0749 9916 9936 9952 9964 0951 0934 0901 3920 9927 9945 9959 19969 9966 9925 9929 9946 9960 9931 9948 9961 9971 3979 9965 9989 9932 9949 9962 9972 J075 19941 190 3401 1635 T170 1579 1335 1292 7271 1210 2.6 9955 9966 9975 9982 1514 1469 171 1977 2266 2578 9956 9967 9976 9982 1423 1562 1814 2090 492 1756 1515 1762 9977 9077 9983 9988 9981 9986 9990 9993 9995 9978 1867 IZ148 2451 2776 3121 3483 9979 9985 9989 9992 9995 9996 9997 2061 2033 1922 T894 2236 2546 2206 2514 2843 S192 3557 2177 2483 2810 3156 13520 2:527 2643 2296 261 (866 9987 9991 -07 50 9989 9992 2626 3015 3372 3745 4129 4522, 9990 9993 9995 9996 9997 2709 1666 9994 9990 991 9993 9995 9992 9992 9994 9996 3085 13050 2981 2946 2912 2877 9993 9994 9995 9994 9994 -04 -0.3 -0.2 3409 S785 4168 14562 3336 3264 5228 33 9495 9996 9996 9997 9996 9997 3669 3632 4013 4404 3.4 3821 4207 4602 9997 9999 9997 9997 9997 3974 3956 3897 3.50 nd up 4052 4483 4443 4364 4325 4286 4247 -0.0 4960 4920 4880 4840 14801 4761 4721 4681 4641 NOTE: For values of z above 3.49, use 0.9993 for the area, Use these common values that result rom interpolation Common Critical Valus Confidence Critical NOTE: For values of z below-349 use O0001 for the rea. "Use these common valuesthat result from interpolat on Level Value Area 0.9500 0.9950 1645 0.90 1645 Area 0.0500 0.0050 2 Score 2575 0.95 196 -1645 0.99 2575 -2575 8882
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman