Assume that a procedure yields a binomial distribution with n=7 trials and a probability of success of p = 0.80. Use a binomial probability table to find the probability that the number of successes x is exactly 2. Click on the icon to view the binomial probabilities table. - X P(2) = (Round to three decimal places as needed.) Binomial probabilities table Binomial Probabilites 40 50 60 70 30 90 96 01 10 20 30 360 250 160 090 040 010 002 0+ 640 490 480 500 AB0 A20 300 150 095 020 180 320 420 250 260 A0 640 10 902 300 002 010 040 000 160 512 216 125 064 027 005 001 0+ 857 729 343 264 432 375 288 189 027 007 29 135 243 441 096 189 266 375 432 441 384 243 .135 029 2 007 827 001 .064 125 216 343 512 729 370 456 A10 240 130 062 008 002 4 961 815 1 412 346 250 154 004 009 171 282 A10 265 375 346 265 154 014 001 2 2 001 014 049 .154 346 .004 026 O76 154 250 346 412 A10 292 171 002 130 240 410 856 315 961 .008 062

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that a procedure yields a binomial distribution with n=7 trials and a probability of success of p = 0.80. Use a binomial probability table to find the probability that the number of successes x is exactly 2.
Click on the icon to view the binomial probabilities table.
- X
P(2) = (Round to three decimal places as needed.)
Binomial probabilities table
Binomial Probabilities
40
50
60
20
30
90
96
99
01
10
20
30
090
040
010
002
10
640
490
360 250 160
480
500
AB0
A20
200
180
095
020
180
320
420
1
250
260 40
A90
540
10
902
300
002
010
000
160
216
125
064
027
008
001
0+
857
729
512
343
284
432
375
288
189
096
027
007
1
29 135
243
441
441
384
243
.135
029
2
2
007
027
189
266
375
064
125
216
343
512
370
001
456
A10
240
.130
130
062
008
002
961
815
202
A10
412
346
250
154
ON
004
.171
049
265
346
375
346
265
154
014
D01
001
014
154
004
026
.154
250
346
412
A10
292
171
002
.026
062
130
240
A10
315
961
.008
5
774 S 328 160
002
951
590
ore
010
156
006
1
048
204
328
A10 0 259
360
073
205
309
346
212
230
132
051 008 001 +
001
021
346 200 205 21
073
01
001 0 51 132 230 312
077
156
259
360
A10
204
48
0+
.010
.001
078
168
390
774
351
941
735
531
262
118
047
016
004
001
057
232
354
393
.187
094
037
010
001 031 as
24
324
311
.234
138
060
015
001
098
+ 002 15
276
O82
185
276
312
185
015
001
015
060
138
234
11
224
246
001
.001
.002
010
.037
094
187
300
354
232
057
0+
.001
004
016
047
118
280
262
531
735
341
AT
210
00e
.002
0+
0+
Help me solve this
Gd
Clear all
Ch
Yiew an example
Transcribed Image Text:Assume that a procedure yields a binomial distribution with n=7 trials and a probability of success of p = 0.80. Use a binomial probability table to find the probability that the number of successes x is exactly 2. Click on the icon to view the binomial probabilities table. - X P(2) = (Round to three decimal places as needed.) Binomial probabilities table Binomial Probabilities 40 50 60 20 30 90 96 99 01 10 20 30 090 040 010 002 10 640 490 360 250 160 480 500 AB0 A20 200 180 095 020 180 320 420 1 250 260 40 A90 540 10 902 300 002 010 000 160 216 125 064 027 008 001 0+ 857 729 512 343 284 432 375 288 189 096 027 007 1 29 135 243 441 441 384 243 .135 029 2 2 007 027 189 266 375 064 125 216 343 512 370 001 456 A10 240 .130 130 062 008 002 961 815 202 A10 412 346 250 154 ON 004 .171 049 265 346 375 346 265 154 014 D01 001 014 154 004 026 .154 250 346 412 A10 292 171 002 .026 062 130 240 A10 315 961 .008 5 774 S 328 160 002 951 590 ore 010 156 006 1 048 204 328 A10 0 259 360 073 205 309 346 212 230 132 051 008 001 + 001 021 346 200 205 21 073 01 001 0 51 132 230 312 077 156 259 360 A10 204 48 0+ .010 .001 078 168 390 774 351 941 735 531 262 118 047 016 004 001 057 232 354 393 .187 094 037 010 001 031 as 24 324 311 .234 138 060 015 001 098 + 002 15 276 O82 185 276 312 185 015 001 015 060 138 234 11 224 246 001 .001 .002 010 .037 094 187 300 354 232 057 0+ .001 004 016 047 118 280 262 531 735 341 AT 210 00e .002 0+ 0+ Help me solve this Gd Clear all Ch Yiew an example
Expert Solution
Step 1

Given that 

n=7 , p=0.80 , q=1-p=1-0.80=0.20

X~Binomial(n=7,p=0.80)

Probability mass function of X is 

P(X=x)=nCxpxqn-x  , x=0,1,2,3,_____

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman