Assume that a procedure yields a binomial distribution with n = 4 trials and a probability of success of p = 0.30. Use a binomial probability table to find the probability that the number of successes x is exactly 2. Click on the icon to view the binomial probabilities table. P(2)= (Round to three decimal places as needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Assume that a procedure yields a binomial distribution with n = 4 trials and a probability of success of p = 0.30. Use a binomial probability table to find the probability that the number of
successes x is exactly 2.
Click on the icon to view the binomial probabilities table.
P(2)= (Round to three decimal places as needed.)
Transcribed Image Text:Assume that a procedure yields a binomial distribution with n = 4 trials and a probability of success of p = 0.30. Use a binomial probability table to find the probability that the number of successes x is exactly 2. Click on the icon to view the binomial probabilities table. P(2)= (Round to three decimal places as needed.)
n
2
7
n
0
1
2
0
1
2
3
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
X
Binomial Probabilmes
01
950
020
0+
.970
0+
0+
.961
039
.001
0+
0+
951
048
.001
0+
0+
0+
941
057
.001
0+
0+
0+
0+
932
.066
002
0+
0+
0+
0+
0+
923
075
003
0+
0+
0+
0+
0+
0+
01
.05
.902
.095
.002
.857
135
.007
0+
.815
.171
.014
0+
0+
.774
.204
.021
.001
0+
0+
.735
.232
.031
.002
0+
0+
0+
.698
.257
.041
,004
0+
0+
0+
0+
.663
.279
.051
.005
0+
0+
0+
0+
0+
.05
.010
.027
.001
.049
古古古古古古古古古古古古
.073
.354
.015
.001
.023
.003
.005
.20
.640
.320
.040
.512
.384
.096
.008
410
410
154
.026
.002
328
410
.205
051
.006
0+
.262
.393
.246
.082
.015
.002
0+
.210
.367
.275
.30
.490
.420
.090
0+
0+
.343
.441
.189
.027
.240
.412
.265
.076
.008
20
.168
.360
.309
.132
.028
.002
168
.068
.336
.198
.294
.296
.147
.254
.046
136
.009 .047
.001
.010
.001
0+
40
360
.30
.480
.160
.118
.303
.324
185
276
.060
138
.010 .087
.001
.004
.082
.028
.247
.131
.318
.261
115
.227 .290
.029
.097
.194
.004 .025
.077
0+
.004
.017
0+
0+
.002
.216
432
288
.064
130
.346
346
.154
.026
.047
.187
.311
.50
.250
.017
.090
.209
279
.232
.124
.041
.008
.001
.40
.500
.250
.078
.031
.259
.156
.346
.312
230
.312
077
.156
.010 .031
.125
.375
.375
.125
.062
.250
.375
.250
.062
.016
.094
234
.312
.234
.094
.016
.008
.065
.164
.273
.273
.164
.065
.008
.004
.031
.109
.219
.273
.219
.109
.031
.004
.50
P
n
.60
.160
480
360
259
078
004
037
.138
276
311
.187
047
002
017
077
194
290
261
064
288
432
216
026
008
.154
076
346
265
346
412
.130
240
010
002
0+
077
028
006
230 .132 .051
346
309
205
360
410
328
.131
028
.001
008
041
124
232
.70
090
420
490
279
027
189
441
343
.168
0+
001
010
047
136
254
209
296
090 .196
017
058
.70
010
060
.185
324
303
118
0+
004
025
097
227
318
247
082
80
040
320
640
008
096
384
512
002
026
154
410
410
0+
002
015
052
246
393
262
0+
0+
004
029
115
275
367
210
0+
0+
.001
009
046
147
294
336
.165
80
.90
010
.180
810
001
027
243
.729
0+
004
049
292
656
0+
007
.135
857
0+
0+
014
.171
815
0+
0+
0+
0+
008 .001
073
021
328
204
590
.774
0+
0+
001
015
095
354
531
0+
0+
0+
003
023
124
372
478
0+
0+
0+
0+
005
033
149
353
430
95
002
.90
095
.902
0+
0+
0+
002
031
232
.735
0+
0+
0+
0+
004
041
257
695
0+
0+
0+
0+
0+
005
051
279
663
.99
0+
.020
,980
0+
0+
.029
.970
0+
0+
.001
039
.961
0+
0+
0+
.001
.048
.951
0+
0+
0+
0+
.001
.057
.941
0+
0+
0+
0+
0+
.002
.066
932
0+
0+
0+
0+
0+
0+
.003
.075
.923
.99
X
0
1
2
0
1
2
3
0
1
2
3
4
0
1
2
3
4
5
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
8
X
n
2
3
7
n
Transcribed Image Text:n 2 7 n 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 X Binomial Probabilmes 01 950 020 0+ .970 0+ 0+ .961 039 .001 0+ 0+ 951 048 .001 0+ 0+ 0+ 941 057 .001 0+ 0+ 0+ 0+ 932 .066 002 0+ 0+ 0+ 0+ 0+ 923 075 003 0+ 0+ 0+ 0+ 0+ 0+ 01 .05 .902 .095 .002 .857 135 .007 0+ .815 .171 .014 0+ 0+ .774 .204 .021 .001 0+ 0+ .735 .232 .031 .002 0+ 0+ 0+ .698 .257 .041 ,004 0+ 0+ 0+ 0+ .663 .279 .051 .005 0+ 0+ 0+ 0+ 0+ .05 .010 .027 .001 .049 古古古古古古古古古古古古 .073 .354 .015 .001 .023 .003 .005 .20 .640 .320 .040 .512 .384 .096 .008 410 410 154 .026 .002 328 410 .205 051 .006 0+ .262 .393 .246 .082 .015 .002 0+ .210 .367 .275 .30 .490 .420 .090 0+ 0+ .343 .441 .189 .027 .240 .412 .265 .076 .008 20 .168 .360 .309 .132 .028 .002 168 .068 .336 .198 .294 .296 .147 .254 .046 136 .009 .047 .001 .010 .001 0+ 40 360 .30 .480 .160 .118 .303 .324 185 276 .060 138 .010 .087 .001 .004 .082 .028 .247 .131 .318 .261 115 .227 .290 .029 .097 .194 .004 .025 .077 0+ .004 .017 0+ 0+ .002 .216 432 288 .064 130 .346 346 .154 .026 .047 .187 .311 .50 .250 .017 .090 .209 279 .232 .124 .041 .008 .001 .40 .500 .250 .078 .031 .259 .156 .346 .312 230 .312 077 .156 .010 .031 .125 .375 .375 .125 .062 .250 .375 .250 .062 .016 .094 234 .312 .234 .094 .016 .008 .065 .164 .273 .273 .164 .065 .008 .004 .031 .109 .219 .273 .219 .109 .031 .004 .50 P n .60 .160 480 360 259 078 004 037 .138 276 311 .187 047 002 017 077 194 290 261 064 288 432 216 026 008 .154 076 346 265 346 412 .130 240 010 002 0+ 077 028 006 230 .132 .051 346 309 205 360 410 328 .131 028 .001 008 041 124 232 .70 090 420 490 279 027 189 441 343 .168 0+ 001 010 047 136 254 209 296 090 .196 017 058 .70 010 060 .185 324 303 118 0+ 004 025 097 227 318 247 082 80 040 320 640 008 096 384 512 002 026 154 410 410 0+ 002 015 052 246 393 262 0+ 0+ 004 029 115 275 367 210 0+ 0+ .001 009 046 147 294 336 .165 80 .90 010 .180 810 001 027 243 .729 0+ 004 049 292 656 0+ 007 .135 857 0+ 0+ 014 .171 815 0+ 0+ 0+ 0+ 008 .001 073 021 328 204 590 .774 0+ 0+ 001 015 095 354 531 0+ 0+ 0+ 003 023 124 372 478 0+ 0+ 0+ 0+ 005 033 149 353 430 95 002 .90 095 .902 0+ 0+ 0+ 002 031 232 .735 0+ 0+ 0+ 0+ 004 041 257 695 0+ 0+ 0+ 0+ 0+ 005 051 279 663 .99 0+ .020 ,980 0+ 0+ .029 .970 0+ 0+ .001 039 .961 0+ 0+ 0+ .001 .048 .951 0+ 0+ 0+ 0+ .001 .057 .941 0+ 0+ 0+ 0+ 0+ .002 .066 932 0+ 0+ 0+ 0+ 0+ 0+ .003 .075 .923 .99 X 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 X n 2 3 7 n
Expert Solution
Step 1: Introduce the given information

Given, 

Number of trials, n = 4

Probability of success, p = 0.30

We need to find the probability that the number of successes x is exactly 2

We use binomial probability table to find the required probability.

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman