Assume sin(t) = -12 where π < t <3. Compute the following: csc (-t) = cos(t + 2) = tan(t) =
Assume sin(t) = -12 where π < t <3. Compute the following: csc (-t) = cos(t + 2) = tan(t) =
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![**Trigonometric Function Calculation**
Given the equation assuming \( \sin(t) = -\frac{1}{12} \) where \( \pi < t < \frac{3\pi}{2} \), compute the following trigonometric functions:
1. \(\csc(-t) = \) \(\boxed{\ \ \ \ \ \ \ }\)
2. \(\cos\left(t + \frac{\pi}{2}\right) = \) \(\boxed{\ \ \ \ \ \ \ }\)
3. \(\tan\left(\frac{\pi}{2} - t\right) = \) \(\boxed{\ \ \ \ \ \ \ }\)
### Explanation:
- **Range of \( t \)**: This specifies that \( t \) is in the third quadrant of the unit circle since \( \pi \) to \( \frac{3\pi}{2} \) lies within the third quadrant.
- **\(\csc(-t)\)**: Calculate using the definition \(\csc(x) = \frac{1}{\sin(x)}\).
- **\(\cos\left(t + \frac{\pi}{2}\right)\)**: Use the co-function identity of sine and cosine.
- **\(\tan\left(\frac{\pi}{2} - t\right)\)**: Use the co-function identity of tangent and cotangent.
***Note:*** The boxed areas are placeholders for the values to be calculated.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1e08cb41-5b2e-4118-8784-a24243109431%2F787cd1a1-1f15-40ef-8209-2665cca0ccfb%2Fe5cjw1e_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Trigonometric Function Calculation**
Given the equation assuming \( \sin(t) = -\frac{1}{12} \) where \( \pi < t < \frac{3\pi}{2} \), compute the following trigonometric functions:
1. \(\csc(-t) = \) \(\boxed{\ \ \ \ \ \ \ }\)
2. \(\cos\left(t + \frac{\pi}{2}\right) = \) \(\boxed{\ \ \ \ \ \ \ }\)
3. \(\tan\left(\frac{\pi}{2} - t\right) = \) \(\boxed{\ \ \ \ \ \ \ }\)
### Explanation:
- **Range of \( t \)**: This specifies that \( t \) is in the third quadrant of the unit circle since \( \pi \) to \( \frac{3\pi}{2} \) lies within the third quadrant.
- **\(\csc(-t)\)**: Calculate using the definition \(\csc(x) = \frac{1}{\sin(x)}\).
- **\(\cos\left(t + \frac{\pi}{2}\right)\)**: Use the co-function identity of sine and cosine.
- **\(\tan\left(\frac{\pi}{2} - t\right)\)**: Use the co-function identity of tangent and cotangent.
***Note:*** The boxed areas are placeholders for the values to be calculated.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning