Assume a graph G is simple (ie. no self loop or parallel edges). Let v be any vertex in the graph. Let boolean[] marked be initalized to all false. Consider: boolean dfs(Graph G, int v) { } marked[v]= true; for (int w G.adj(v)) { if (w == u) continue; if (marked[w]) return true; if (dfs (G, v, w)) return true; } return false; If the call dfs(v) returns true, then: a. The graph has cycles b. The graph is bipartite c. The graph is connected Not enough information b a
Assume a graph G is simple (ie. no self loop or parallel edges). Let v be any vertex in the graph. Let boolean[] marked be initalized to all false. Consider: boolean dfs(Graph G, int v) { } marked[v]= true; for (int w G.adj(v)) { if (w == u) continue; if (marked[w]) return true; if (dfs (G, v, w)) return true; } return false; If the call dfs(v) returns true, then: a. The graph has cycles b. The graph is bipartite c. The graph is connected Not enough information b a
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
![Assume a graph G is simple (i.e., no self-loop or parallel edges).
Let v be any vertex in the graph.
Let boolean[] marked be initialized to all false.
Consider:
```java
boolean dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (w == u) continue;
if (marked[w]) return true;
if (dfs(G, w)) return true;
}
return false;
}
```
If the call dfs(v) returns true, then:
a. The graph has cycles
b. The graph is bipartite
c. The graph is connected
- ○ Not enough information
- ○ b
- ○ c
- ○ a](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe418dfc1-6cae-43cf-a5a8-d6abd47c332b%2F36e357cb-f7c4-4e40-8465-af3c4508a0f6%2Fk6fmbfa_processed.png&w=3840&q=75)
Transcribed Image Text:Assume a graph G is simple (i.e., no self-loop or parallel edges).
Let v be any vertex in the graph.
Let boolean[] marked be initialized to all false.
Consider:
```java
boolean dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (w == u) continue;
if (marked[w]) return true;
if (dfs(G, w)) return true;
}
return false;
}
```
If the call dfs(v) returns true, then:
a. The graph has cycles
b. The graph is bipartite
c. The graph is connected
- ○ Not enough information
- ○ b
- ○ c
- ○ a
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education

Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON

Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON

C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON

Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning

Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education