Aşağıdaki lineer sistemi Cramer yöntemi ile çözerek A matrisinin determinantını (det (A)) ve çözümün ilk bileşenini (₁) bulunuz. Solve the following system by applying the Cramer's rule and find the determinant of matrix A (det (A)) and the first component (1) of the solution. #1+₂+63=7 -X₁+2x₂+9x3=2 #1-2₂+3*3=10 det(A) = -20, x₁ = -1 O det(A) = 36, x₁ = 3 O det (A) = 20, 2₁ = 1 O det (A) = 4, 1=1 / O det(A)=-20, ₁ 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Aşağıdaki lineer sistemi Cramer yöntemi ile çözerek A matrisinin determinantını (det (A))
ve çözümün ilk bileşenini (₁) bulunuz.
Solve the following system by applying the Cramer's rule and find the determinant of matrix A
(det (A)) and the first component (1) of the solution.
#1+₂+63=7
-X₁+2x₂+9x3=2
#1-2₂+3*3=10
det(A) = -20, x₁ = -1
O
det(A) = 36, x₁ = 3
O det (A) = 20, 2₁ = 1
O det (A) = 4,21 = -1/
O det(A)=-20, ₁ 1
Transcribed Image Text:Aşağıdaki lineer sistemi Cramer yöntemi ile çözerek A matrisinin determinantını (det (A)) ve çözümün ilk bileşenini (₁) bulunuz. Solve the following system by applying the Cramer's rule and find the determinant of matrix A (det (A)) and the first component (1) of the solution. #1+₂+63=7 -X₁+2x₂+9x3=2 #1-2₂+3*3=10 det(A) = -20, x₁ = -1 O det(A) = 36, x₁ = 3 O det (A) = 20, 2₁ = 1 O det (A) = 4,21 = -1/ O det(A)=-20, ₁ 1
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,