As we've previously seen, equations describing situations often contain uncertain parameters, that is, parameters that aren't necessarily a single value but instead are associated with a probability distribution function. When more than one of the variables is unknown, the outcome is difficult to visualize. A common way to overcome this difficulty is to simulate the scenario many times and count the number of times different ranges of outcomes occur. One such popular simulation is called a Monte Carlo Simulation. In this problem-solving exercise you will develop a program that will perform a Monte Carlo simulation on a simple profit function. Consider the following total profit function: PT=nPy Where Pr is the total profit, n is the number of vehicles sold and P, is the profit per vehicle. PART A Compute 5 iterations of a Monte Carlo simulation given the following information: n follows a uniform distribution with minimum of 1 and maximum 10 P, follows a normal distribution with a mean of $8125 and a standard deviation of $1275 Number of bins: 10 i.) ii.) PROBLEM-SOLVING EXERCISE #4 Recall that for all practical purposes we will use 3 std. deviations from the mean as the maximum value for parameters following a normal distribution. Obviously, 5 iterations are not very many. In fact, typically you would simulate 10,000 iterations or so to view meaningful results but I figured that I'd give you a break Ⓒ. SIMULATION Parameter n Py PT Bin # $ Range iii.) 1: 6: What are the ranges for the 10 bins? Fill in the table below: Iteration 1 6 $8000 Iteration 2 8 $9100 Iteration 3 2 $2175 Fill in the frequency of occurrences of each bin: 2: 7: 3: 8: 4: 9: Iteration 4 5 $7875 Iteration 5 7 $3175 5: 10:
As we've previously seen, equations describing situations often contain uncertain parameters, that is, parameters that aren't necessarily a single value but instead are associated with a probability distribution function. When more than one of the variables is unknown, the outcome is difficult to visualize. A common way to overcome this difficulty is to simulate the scenario many times and count the number of times different ranges of outcomes occur. One such popular simulation is called a Monte Carlo Simulation. In this problem-solving exercise you will develop a program that will perform a Monte Carlo simulation on a simple profit function. Consider the following total profit function: PT=nPy Where Pr is the total profit, n is the number of vehicles sold and P, is the profit per vehicle. PART A Compute 5 iterations of a Monte Carlo simulation given the following information: n follows a uniform distribution with minimum of 1 and maximum 10 P, follows a normal distribution with a mean of $8125 and a standard deviation of $1275 Number of bins: 10 i.) ii.) PROBLEM-SOLVING EXERCISE #4 Recall that for all practical purposes we will use 3 std. deviations from the mean as the maximum value for parameters following a normal distribution. Obviously, 5 iterations are not very many. In fact, typically you would simulate 10,000 iterations or so to view meaningful results but I figured that I'd give you a break Ⓒ. SIMULATION Parameter n Py PT Bin # $ Range iii.) 1: 6: What are the ranges for the 10 bins? Fill in the table below: Iteration 1 6 $8000 Iteration 2 8 $9100 Iteration 3 2 $2175 Fill in the frequency of occurrences of each bin: 2: 7: 3: 8: 4: 9: Iteration 4 5 $7875 Iteration 5 7 $3175 5: 10:
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 2 images
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education