As this sandhill crane (Grus canadensis) glides in to a landing, it descends along a straight-line path at a constant speed. During the glide, what happens to the total mechanical energy (the sum of kinetic energy and gravitational potential energy)? (i) It stays the same; (ii) it increases due to the effect of gravity; (iii) it increases due to the effect of the air; (iv) it decreases due to the effect of gravity; (v) it decreases due to the effect of the air.
As this sandhill crane (Grus canadensis) glides in to a landing, it descends along a straight-line path at a constant speed. During the glide, what happens to the total mechanical energy (the sum of kinetic energy and gravitational potential energy)? (i) It stays the same; (ii) it increases due to the effect of gravity; (iii) it increases due to the effect of the air; (iv) it decreases due to the effect of gravity; (v) it decreases due to the effect of the air.
Related questions
Question
As this sandhill crane (Grus canadensis)
glides in to a landing, it descends along
a straight-line path at a constant speed.
During the glide, what happens to the total
mechanical energy (the sum of kinetic energy
and gravitational potential energy)? (i) It stays
the same; (ii) it increases due to the effect
of gravity; (iii) it increases due to the
effect
of the air; (iv) it decreases due to
the effect of gravity; (v) it decreases due
to the effect of the air.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps