As shown in the picture blew, a pump can deliver volume flow rate of    of water through a vertical lift of .  The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40  steel pipe.   The energy loss . (1) Calculate velocity at the exit of point 2__________m/s

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

As shown in the picture blew, a pump can deliver volume flow rate of    of water through a vertical lift of .  The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40  steel pipe.   The energy loss . (1) Calculate velocity at the exit of point 2__________m/s

As shown in the picture blew, a pump can deliver volume flow rate of Q=3.6 x 10³ m³/s of water through a vertical lift of h = 8.0m. The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40 steel
pipe. The energy loss h₁ = 1.0m. (1) Calculate velocity at the exit of point 2
__________m/s
TABLE F.1
Schedule 40
Nominal
Pipe Size
Outside Diameter
Wall Thickness
Inside Diameter
Flow Area
DN
(mm)
(in)
0.405
(mm)
10.3
(in)
0.068
(in)
0.269
6
(mm)
1.73
2.24
2.31
8
0.540
13.7
0.088
10
0.675
17.1
0.091
15
0.840
21.3
0.109
20
1.050
26.7
0.113
2.77
2.87
3.38
25 1.315
33.4
0.133
32
1.660
42.2
0.140
3.56
40
1.900
48.3
0.145
3.68
50
2.375
60.3 0.154
3.91
(ft)
(mm)
0.0224
6.8
0.364 0.0303
9.2
0.493 0.0411 12.5
0.622 0.0518 15.8
0.824 0.0687 20.9
1.049 0.0874
26.6
1.380 0.1150 35.1
1.610 0.1342
40.9
2.067 0.1723 52.5
62.7
77.9
90.1
102.3
0.4206 128.2
0.5054 154.1
7.981 0.6651 202.7
0.8350
0.9948
65
2.875
73.0
0.203
5.16
2.469
3.068
80
3.500
88.9
0.216
5.49
0.2058
0.2557
0.2957
90
4.000
101.6
0.226
5.74
3.548
100 4.500
114.3 0.237
6.02
4.026
0.3355
125
5.563
141.3
0.258
6.55
5.047
150 6.625
168.3 0.280
7.11
6.065
200
8.625
219.1
0.322
8.18
9.27
250
10.750
273.1
0.365
10.020
11.938
254.5
303.2
300
12.750
323.9
0.406
10.31
350 14.000
355.6 0.437
11.10.
13.126
1.094
333.4
Pump
2
NPS
(in)
1/8
44
¾
½
3/4
1
144
1½/2
2
2½/22
3
3½
4
56
8
10
12
14
(ft²)
0.000 394
0.000 723
0.001 33
0.002 11
0.003 70
0.006 00
0.010 39
0.014 14
0.023 33
0.033 26
0.051 32
0.068 68
0.088 40
0.139 0
0.200 6
0.347 2
0.547 9
0.777 1
0.939 6
(m²)
3.660 x 10-5
6.717 x 10-5
1.236 x 10-4
1.960 x 10-4
3.437 x 10-4
5.574 x 10-4
9.653 x 104
1.314 x 10-3
2.168 x 10-3
3.090 x 10 3
4.768 x 10-3
6.381 x 10-3
8.213 x 10-3
1.291 x 10-²
1.864 x 10-²
3.226 x 10-2
5.090 x 10-²
7.219 x 10-²
8.729 x 10-2
Transcribed Image Text:As shown in the picture blew, a pump can deliver volume flow rate of Q=3.6 x 10³ m³/s of water through a vertical lift of h = 8.0m. The inlet to the pump is just below the water surface and the discharge is to the atmosphere through a DN50 schedule 40 steel pipe. The energy loss h₁ = 1.0m. (1) Calculate velocity at the exit of point 2 __________m/s TABLE F.1 Schedule 40 Nominal Pipe Size Outside Diameter Wall Thickness Inside Diameter Flow Area DN (mm) (in) 0.405 (mm) 10.3 (in) 0.068 (in) 0.269 6 (mm) 1.73 2.24 2.31 8 0.540 13.7 0.088 10 0.675 17.1 0.091 15 0.840 21.3 0.109 20 1.050 26.7 0.113 2.77 2.87 3.38 25 1.315 33.4 0.133 32 1.660 42.2 0.140 3.56 40 1.900 48.3 0.145 3.68 50 2.375 60.3 0.154 3.91 (ft) (mm) 0.0224 6.8 0.364 0.0303 9.2 0.493 0.0411 12.5 0.622 0.0518 15.8 0.824 0.0687 20.9 1.049 0.0874 26.6 1.380 0.1150 35.1 1.610 0.1342 40.9 2.067 0.1723 52.5 62.7 77.9 90.1 102.3 0.4206 128.2 0.5054 154.1 7.981 0.6651 202.7 0.8350 0.9948 65 2.875 73.0 0.203 5.16 2.469 3.068 80 3.500 88.9 0.216 5.49 0.2058 0.2557 0.2957 90 4.000 101.6 0.226 5.74 3.548 100 4.500 114.3 0.237 6.02 4.026 0.3355 125 5.563 141.3 0.258 6.55 5.047 150 6.625 168.3 0.280 7.11 6.065 200 8.625 219.1 0.322 8.18 9.27 250 10.750 273.1 0.365 10.020 11.938 254.5 303.2 300 12.750 323.9 0.406 10.31 350 14.000 355.6 0.437 11.10. 13.126 1.094 333.4 Pump 2 NPS (in) 1/8 44 ¾ ½ 3/4 1 144 1½/2 2 2½/22 3 3½ 4 56 8 10 12 14 (ft²) 0.000 394 0.000 723 0.001 33 0.002 11 0.003 70 0.006 00 0.010 39 0.014 14 0.023 33 0.033 26 0.051 32 0.068 68 0.088 40 0.139 0 0.200 6 0.347 2 0.547 9 0.777 1 0.939 6 (m²) 3.660 x 10-5 6.717 x 10-5 1.236 x 10-4 1.960 x 10-4 3.437 x 10-4 5.574 x 10-4 9.653 x 104 1.314 x 10-3 2.168 x 10-3 3.090 x 10 3 4.768 x 10-3 6.381 x 10-3 8.213 x 10-3 1.291 x 10-² 1.864 x 10-² 3.226 x 10-2 5.090 x 10-² 7.219 x 10-² 8.729 x 10-2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Forms of Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY