As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.466)v after passing through the target. The collision is inelastic and during the collision, the amount of kinetic energy lost by the bullet and paper is equal to [(0.303)Kb BC], that is, 0.303 of the kinetic energy of the bullet before the collision. Determine the mass M of the target and the speed V of the target the instant after the collision in terms of the mass m of the b
As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. The bullet has a mass m, a speed v before the collision with the target, and a speed (0.466)v after passing through the target. The collision is inelastic and during the collision, the amount of kinetic energy lost by the bullet and paper is equal to [(0.303)Kb BC], that is, 0.303 of the kinetic energy of the bullet before the collision. Determine the mass M of the target and the speed V of the target the instant after the collision in terms of the mass m of the bullet and speed v of the bullet before the collision. (Express your answers to at least 3 decimals.)
V = | v |
M = | m |
![DAC.
M
M
(a) Before collision
(b) After collision](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F77204926-536f-4f43-98e0-3dd258f9d4ee%2F43844e24-b1af-4738-8123-f0b1bc707b7f%2Fjw8rtuo_processed.gif&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)