As shown in the figure, a chamber with a moveable piston and containing a monatomic ideal gas in an initial state A undergoes an isovolumetric, then an isothermal, and finally an isobaric process to complete the cycle. When the gas is in the initial state, the volume is 3.00 L, the pressure is 5.00 atm, and the temperature is 200 K. The gas is first warmed at constant volume to a pressure of 4 times the initial value (state B). The gas is then allowed to expand isothermally to some new volume (state C). Finally, it is compressed isobarically to its initial state. Due to the nature of this problem, do not use rounded intermediate values in your calculations. Find the volume of the gas at state C (in L). Determine values (in kJ) for Q, W, and ΔEint for the process A → B. Determine values (in kJ) for Q, W, and ΔEint for the process B → C.
As shown in the figure, a chamber with a moveable piston and containing a monatomic ideal gas in an initial state A undergoes an isovolumetric, then an isothermal, and finally an isobaric process to complete the cycle.
When the gas is in the initial state, the volume is 3.00 L, the pressure is 5.00 atm, and the temperature is 200 K. The gas is first warmed at constant volume to a pressure of 4 times the initial value (state B). The gas is then allowed to expand isothermally to some new volume (state C). Finally, it is compressed isobarically to its initial state. Due to the nature of this problem, do not use rounded intermediate values in your calculations.
Find the volume of the gas at state C (in L).
Determine values (in kJ) for Q, W, and ΔEint for the process A → B.
Determine values (in kJ) for Q, W, and ΔEint for the process B → C.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images