As shown in Figure 1, a block with mass m = 3.5 kg is placed on a horizontal surface at position A, where it compresses a spring with spring constant k by a displacement Ax. 1 K = =mv² Ug = mgy 1 Delta x (cm) = 49.25 U, = żK(Ax)? F = HkN The mass is released from rest at position A, and the spring expands until the block leaves the spring at position B. There is no friction between A and B. Wext = Fext Cos 0 Ax Wext = (K – Ko) + (U – U.) Between positions B and C, the block travels over a flat, rough surface having a coefficient of kinetic friction µg and length d = 5.5 m. d Figure 1. Between positions C and D, the block climbs a curved ramp until it reaches position D, a height h = 2.0 m above the surface. There is no friction between C and D. a) The block's velocity when it reaches position B is vg = 9.65 m/s. Use conservation of energy between positions A and B to calculate the value of the spring constant k (in N/m). b) The block's velocity when it reaches position C is vc- v. (m/s) = 6.45 Use conservation of energy between positions B and C to calculate the coefficient of kinetic friction Hk- c) Use conservation of energy between positions C and D to calculate the block's velocity (in m/s) when it reaches position D.
As shown in Figure 1, a block with mass m = 3.5 kg is placed on a horizontal surface at position A, where it compresses a spring with spring constant k by a displacement Ax. 1 K = =mv² Ug = mgy 1 Delta x (cm) = 49.25 U, = żK(Ax)? F = HkN The mass is released from rest at position A, and the spring expands until the block leaves the spring at position B. There is no friction between A and B. Wext = Fext Cos 0 Ax Wext = (K – Ko) + (U – U.) Between positions B and C, the block travels over a flat, rough surface having a coefficient of kinetic friction µg and length d = 5.5 m. d Figure 1. Between positions C and D, the block climbs a curved ramp until it reaches position D, a height h = 2.0 m above the surface. There is no friction between C and D. a) The block's velocity when it reaches position B is vg = 9.65 m/s. Use conservation of energy between positions A and B to calculate the value of the spring constant k (in N/m). b) The block's velocity when it reaches position C is vc- v. (m/s) = 6.45 Use conservation of energy between positions B and C to calculate the coefficient of kinetic friction Hk- c) Use conservation of energy between positions C and D to calculate the block's velocity (in m/s) when it reaches position D.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Can you help me solve these equations?

Transcribed Image Text:As shown in Figure 1, a block with mass
m = 3.5 kg is placed on a horizontal surface at
position A, where it compresses a spring with
spring constant k by a displacement Ax.
K = :
= mgy
Us
Delta x (cm) = 49.25
U, = -k(ax)?
Fr = HkN
The mass is released from rest at position A, and
the spring expands until the block leaves the
spring at position B. There is no friction between
A and B.
Wext = Fext Cos 0 Ax
Wext = (K – Ko) + (U – U.)
Between positions B and C, the block travels over a flat, rough surface having a
coefficient of kinetic friction µg and length d = 5.5 m.
k
h
m
d
Figure 1.
Between positions C and D, the block climbs a curved ramp until it reaches position
D, a height h = 2.0 m above the surface. There is no friction between C and D.
a) The block's velocity when it reaches position B is vg = 9.65 m/s. Use
conservation of energy between positions A and B to calculate the value of the
spring constant k (in N/m).
b) The block's velocity when it reaches position C is vc.
ve (m/s)
: 6.45
Use conservation of energy between positions B and C to calculate the coefficient
of kinetic friction µx-
c) Use conservation of energy between positions C and D to calculate the block's
velocity (in m/s) when it reaches position D.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON