Applying conservation of momentum in x-direction as, MA mA(vA), +ms(vs) (VA)₂ + (VB) x 5 m/s...... (1) 3 MA ( - VA) ₁ + MB (VB) ₁³/ А 1 15 -8 m/s+5m/s²/ (VA) x + (VB)x Here, (VA)X and (VB)x are the velocity after collision in x direction. The expression of coefficient of restitution is, VAX-VBx VB₁-VA1 e Substitute given values in above expression, VAX - VBx 0.5 5--5 5 m/s......... (2) VAX VBx || On solving equation (1) and (2), VAX 7 m/SVBx ? m/s
Applying conservation of momentum in x-direction as, MA mA(vA), +ms(vs) (VA)₂ + (VB) x 5 m/s...... (1) 3 MA ( - VA) ₁ + MB (VB) ₁³/ А 1 15 -8 m/s+5m/s²/ (VA) x + (VB)x Here, (VA)X and (VB)x are the velocity after collision in x direction. The expression of coefficient of restitution is, VAX-VBx VB₁-VA1 e Substitute given values in above expression, VAX - VBx 0.5 5--5 5 m/s......... (2) VAX VBx || On solving equation (1) and (2), VAX 7 m/SVBx ? m/s
Related questions
Question
100%
Can you help me find VAx and VBx
![## Conservation of Momentum in the X-Direction
### Applying Conservation of Momentum
Applying conservation of momentum in the x-direction for two colliding bodies, we have:
\[
m_A (-v_{A}) + m_B (v_B) \frac{3}{15} = m_A (v_A)_x + m_B (v_B)_x
\]
This simplifies to:
\[
-8 \, \text{m/s} + 5 \, \text{m/s} \cdot \frac{3}{5} = (v_A)_x + (v_B)_x = -5 \, \text{m/s} \quad \text{(1)}
\]
Here, \((v_A)_x\) and \((v_B)_x\) are the velocities after the collision in the x direction.
### Coefficient of Restitution
The expression for the coefficient of restitution \(e\) is given by:
\[
e = \frac{v_{Ax} - v_{Bx}}{v_{B1} - v_{A1}}
\]
### Substituting Values
Substitute the given values into the expression for restitution:
\[
0.5 = \frac{v_{Ax} - v_{Bx}}{5 - 5}
\]
This leads to:
\[
v_{Ax} - v_{Bx} = 5 \, \text{m/s} \quad \text{(2)}
\]
### Solving the Equations
On solving equations (1) and (2):
\[
v_{Ax} = \, ? \, \text{m/s} \quad v_{Bx} = \, ? \, \text{m/s}
\]
Note: The question marks indicate that specific numerical values are not provided in the image and need to be calculated or given.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8eaaea92-e247-4966-90e2-8af37fd7e5c3%2F6292e6d9-4f2f-4027-8f84-b87b576b027c%2Fxz94y2f_processed.png&w=3840&q=75)
Transcribed Image Text:## Conservation of Momentum in the X-Direction
### Applying Conservation of Momentum
Applying conservation of momentum in the x-direction for two colliding bodies, we have:
\[
m_A (-v_{A}) + m_B (v_B) \frac{3}{15} = m_A (v_A)_x + m_B (v_B)_x
\]
This simplifies to:
\[
-8 \, \text{m/s} + 5 \, \text{m/s} \cdot \frac{3}{5} = (v_A)_x + (v_B)_x = -5 \, \text{m/s} \quad \text{(1)}
\]
Here, \((v_A)_x\) and \((v_B)_x\) are the velocities after the collision in the x direction.
### Coefficient of Restitution
The expression for the coefficient of restitution \(e\) is given by:
\[
e = \frac{v_{Ax} - v_{Bx}}{v_{B1} - v_{A1}}
\]
### Substituting Values
Substitute the given values into the expression for restitution:
\[
0.5 = \frac{v_{Ax} - v_{Bx}}{5 - 5}
\]
This leads to:
\[
v_{Ax} - v_{Bx} = 5 \, \text{m/s} \quad \text{(2)}
\]
### Solving the Equations
On solving equations (1) and (2):
\[
v_{Ax} = \, ? \, \text{m/s} \quad v_{Bx} = \, ? \, \text{m/s}
\]
Note: The question marks indicate that specific numerical values are not provided in the image and need to be calculated or given.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
