Apply the theorem: /Let (XN) be a sequence of positive real Numbers such that Li 2:= lim (XN+1/XN) exists. If L<1, then (XN) converges and lim (XN) = 0. to the following sequences, where a,b satisfy O
Apply the theorem: /Let (XN) be a sequence of positive real Numbers such that Li 2:= lim (XN+1/XN) exists. If L<1, then (XN) converges and lim (XN) = 0. to the following sequences, where a,b satisfy O
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Apply the theorem :/ Let (XN) be a sequence of positive
real Numbers such that Li-
L: = lim (XN+1/XN) exists. If L<1,
theN (X) converges and lim (XN) = 0.
to the following sequences, where a, b satisfy o
O<a<1, b>1:
a) (a") b) (b"/2") c) (N/b") d) (23³"/32N)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe57a7d70-87de-4a1f-8104-5b2578062c6c%2Fb5449d32-2796-49fa-88d4-f535a0b12711%2Fuj6710v_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Apply the theorem :/ Let (XN) be a sequence of positive
real Numbers such that Li-
L: = lim (XN+1/XN) exists. If L<1,
theN (X) converges and lim (XN) = 0.
to the following sequences, where a, b satisfy o
O<a<1, b>1:
a) (a") b) (b"/2") c) (N/b") d) (23³"/32N)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Solution
Given sequences:
(a):
(b):
(c):
(d):
where and
satisfy
We have to find the limit of the given sequences by applying the given theorem.
Trending now
This is a popular solution!
Step by step
Solved in 7 steps with 62 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)