Apply the Midpoint and Trapezoid Rules to the following integral. Make a table showing the approximations and errors for n = 4, 8, 16 exact value of the integral is given for computing the error. 5 $(x²- 1 Complete the following table. (Type integers or decimals.) M(n) 222 n (6x²-2x) dx = 224 4 8 T(n) 228 Absolute Error in M(n) 2 ... Absolute Error in T(n) 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Please help with table for n=8, n=16, n=32
**Applying Midpoint and Trapezoid Rules**

We apply the Midpoint and Trapezoid Rules to the following integral:

\[
\int_{1}^{5} (6x^2 - 2x) \, dx = 224
\]

Create a table showing the approximations and errors for \( n = 4, 8, 16, \) and \( 32 \). The exact value of the integral is provided for computing the error.

**Table:**

| \( n \) | \( M(n) \) | \( T(n) \) | Absolute Error in \( M(n) \) | Absolute Error in \( T(n) \) |
|---------|-----------|------------|-------------------------------|-------------------------------|
| 4       | 222       | 228        | 2                             | 4                             |
| 8       |           |            |                               |                               |

- **\( n \)**: The number of subdivisions.
- **\( M(n) \)**: Approximation using the Midpoint Rule.
- **\( T(n) \)**: Approximation using the Trapezoid Rule.
- **Absolute Error**: The absolute difference between the approximation and the exact value 224.

Continue filling the table for \( n = 8, 16, \) and \( 32 \). Calculate the approximations and the corresponding errors for each method.
Transcribed Image Text:**Applying Midpoint and Trapezoid Rules** We apply the Midpoint and Trapezoid Rules to the following integral: \[ \int_{1}^{5} (6x^2 - 2x) \, dx = 224 \] Create a table showing the approximations and errors for \( n = 4, 8, 16, \) and \( 32 \). The exact value of the integral is provided for computing the error. **Table:** | \( n \) | \( M(n) \) | \( T(n) \) | Absolute Error in \( M(n) \) | Absolute Error in \( T(n) \) | |---------|-----------|------------|-------------------------------|-------------------------------| | 4 | 222 | 228 | 2 | 4 | | 8 | | | | | - **\( n \)**: The number of subdivisions. - **\( M(n) \)**: Approximation using the Midpoint Rule. - **\( T(n) \)**: Approximation using the Trapezoid Rule. - **Absolute Error**: The absolute difference between the approximation and the exact value 224. Continue filling the table for \( n = 8, 16, \) and \( 32 \). Calculate the approximations and the corresponding errors for each method.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,