Apply the Midpoint and Trapezoid Rules to the following integral. Make a table showing the approximations and errors for n = 4, 8, 16, and 32. The exact value of the integral is given for computing the error. n 5 Complete the following table. (Type integers or decimals.) M(n) 4 (3x² - 2x) dx = 100 T(n) Absolute Error in M(n) Absolute Error in T(n) CELL

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Complete the table for n = 4, 8, 16, and 32
**Title: Approximating Integrals Using the Midpoint and Trapezoid Rules**

---

**Problem Statement:**

Apply the Midpoint and Trapezoid Rules to approximate the following integral, and create a table showing the approximations and errors for \( n = 4, 8, 16, \) and \( 32 \). The exact value of the integral is given for computing the error.

\[
\int_{1}^{5} (3x^2 - 2x) \, dx = 100
\]

---

**Instructions:**

Complete the following table with the approximations and the absolute errors for each method and each value of \( n \).

*(Type integers or decimals.)*

\[
\begin{array}{|c|c|c|c|c|}
\hline
n & M(n) & T(n) & \text{Absolute Error in } M(n) & \text{Absolute Error in } T(n) \\
\hline
4 & \, & \, & \, & \, \\
\hline
\end{array}
\]

---

**Explanation of Terms:**

- **\( M(n) \)**: The approximation using the Midpoint Rule with \( n \) subintervals.
- **\( T(n) \)**: The approximation using the Trapezoid Rule with \( n \) subintervals.
- **Absolute Error**: The difference between the exact value and the approximation. 

This exercise will help in understanding how numerical integration can be used to approximate definite integrals and how the accuracy of the approximation improves with an increasing number of subintervals.
Transcribed Image Text:**Title: Approximating Integrals Using the Midpoint and Trapezoid Rules** --- **Problem Statement:** Apply the Midpoint and Trapezoid Rules to approximate the following integral, and create a table showing the approximations and errors for \( n = 4, 8, 16, \) and \( 32 \). The exact value of the integral is given for computing the error. \[ \int_{1}^{5} (3x^2 - 2x) \, dx = 100 \] --- **Instructions:** Complete the following table with the approximations and the absolute errors for each method and each value of \( n \). *(Type integers or decimals.)* \[ \begin{array}{|c|c|c|c|c|} \hline n & M(n) & T(n) & \text{Absolute Error in } M(n) & \text{Absolute Error in } T(n) \\ \hline 4 & \, & \, & \, & \, \\ \hline \end{array} \] --- **Explanation of Terms:** - **\( M(n) \)**: The approximation using the Midpoint Rule with \( n \) subintervals. - **\( T(n) \)**: The approximation using the Trapezoid Rule with \( n \) subintervals. - **Absolute Error**: The difference between the exact value and the approximation. This exercise will help in understanding how numerical integration can be used to approximate definite integrals and how the accuracy of the approximation improves with an increasing number of subintervals.
Expert Solution
Step 1: Analysis and Introduction

Given Information:

integral subscript 1 superscript 5 open parentheses 3 x squared minus 2 x close parentheses d x equals 100.

n equals 4 comma 8 comma 16.32.

To find:

The approximate value of integration by midpoint rule and trapezoid rule.

Also, find the approximate error when compared to exact value.

Concept used:

Midpoint rule:integral subscript a superscript b f open parentheses x close parentheses d x equals increment x sum from i equals 1 to n of f open parentheses top enclose x subscript i end enclose close parentheses, where top enclose x subscript i end enclose is the midpoint of i to the power of th sub-interval and increment x equals fraction numerator b minus a over denominator n end fraction.

Trapezoidal ruleintegral subscript a superscript b f open parentheses x close parentheses d x equals fraction numerator increment x over denominator 2 end fraction open square brackets f open parentheses x subscript 0 close parentheses plus f open parentheses x subscript n close parentheses plus 2 open parentheses f open parentheses x subscript 1 close parentheses plus f open parentheses x subscript 2 close parentheses plus... plus f open parentheses x subscript n minus 1 end subscript close parentheses close parentheses close square brackets

steps

Step by step

Solved in 6 steps with 60 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,