Apply the composite Gaussian Quadrature to approximate the integralfo f(x)dx for a = 0, b = 1, f(x) = x² + 3x using N = 10 subintervals. Calculate the absolute error using the exact integral. Repeat your calculation for N = 10, 20, 30, 40, 50. Observe the error as N gets larger. Program Flow • Import necessary Python libraries • Define the integrand f(x) • Define a function for the single Qaussian Qudrature rule given the input variables ▪ left end point of interval ▪ right end pont of interval ▪ integrand f b-a • Determine the length of each subinterval h = N • Construct a partition of the integration domain [a, b] • For each subinterval ▪ calculate the approximate integral on subinteval [x₁-1 - x₂] ▪ add the result to all previous subintervals • Calculate the absolute error Display the final approximate integral and the absolute error

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Python

Apply the composite Gaussian Quadrature to approximate the integral f f(x)dx for
a = 0, b = 1, f(x) = x² + 3x using N = 10 subintervals. Calculate the absolute error using
the exact integral. Repeat your calculation for N = 10, 20, 30, 40, 50. Observe the error as N
gets larger.
Program Flow
• Import necessary Python libraries
• Define the integrand f(x)
• Define a function for the single Qaussian Qudrature rule given the input variables
▪ left end point of interval
▪ right end pont of interval
▪ integrand f
b-a
N
• Construct a partition of the integration domain [a, b]
For each subinterval
Determine the length of each subinterval h
=
▪ calculate the approximate integral on subinteval [x₁-1 − x¡]
▪ add the result to all previous subintervals
• Calculate the absolute error
Display the final approximate integral and the absolute error
Transcribed Image Text:Apply the composite Gaussian Quadrature to approximate the integral f f(x)dx for a = 0, b = 1, f(x) = x² + 3x using N = 10 subintervals. Calculate the absolute error using the exact integral. Repeat your calculation for N = 10, 20, 30, 40, 50. Observe the error as N gets larger. Program Flow • Import necessary Python libraries • Define the integrand f(x) • Define a function for the single Qaussian Qudrature rule given the input variables ▪ left end point of interval ▪ right end pont of interval ▪ integrand f b-a N • Construct a partition of the integration domain [a, b] For each subinterval Determine the length of each subinterval h = ▪ calculate the approximate integral on subinteval [x₁-1 − x¡] ▪ add the result to all previous subintervals • Calculate the absolute error Display the final approximate integral and the absolute error
Expert Solution
steps

Step by step

Solved in 4 steps with 6 images

Blurred answer
Knowledge Booster
Time complexity
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education