Answer: f'(x) = b. f(x) = In (x – + 15)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem:**

b. \( f(x) = \ln \left( x - \frac{x^3}{6} + 15 \right) \)

**Question:** Find \( f'(x) \).

---

**Solution:**

Apply the chain rule to find the derivative \( f'(x) \).

1. **Identify the inner function, \( u(x) \):**  
   \( u(x) = x - \frac{x^3}{6} + 15 \)

2. **Differentiate \( u(x) \):**  
   \[
   u'(x) = 1 - \frac{3x^2}{6} = 1 - \frac{x^2}{2}
   \]

3. **Use the chain rule:**  
   The derivative of \( \ln(u) \) is \( \frac{1}{u} \times u'(x) \).

4. **Calculate \( f'(x) \):**  
   \[
   f'(x) = \frac{1}{x - \frac{x^3}{6} + 15} \times \left( 1 - \frac{x^2}{2} \right)
   \]

The result for the derivative is:
\[
f'(x) = \frac{1 - \frac{x^2}{2}}{x - \frac{x^3}{6} + 15}
\]
Transcribed Image Text:**Problem:** b. \( f(x) = \ln \left( x - \frac{x^3}{6} + 15 \right) \) **Question:** Find \( f'(x) \). --- **Solution:** Apply the chain rule to find the derivative \( f'(x) \). 1. **Identify the inner function, \( u(x) \):** \( u(x) = x - \frac{x^3}{6} + 15 \) 2. **Differentiate \( u(x) \):** \[ u'(x) = 1 - \frac{3x^2}{6} = 1 - \frac{x^2}{2} \] 3. **Use the chain rule:** The derivative of \( \ln(u) \) is \( \frac{1}{u} \times u'(x) \). 4. **Calculate \( f'(x) \):** \[ f'(x) = \frac{1}{x - \frac{x^3}{6} + 15} \times \left( 1 - \frac{x^2}{2} \right) \] The result for the derivative is: \[ f'(x) = \frac{1 - \frac{x^2}{2}}{x - \frac{x^3}{6} + 15} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning