Ans. (5) Given position vector r(t) = (t₁ t - sint, 1- cast) ⇒ r (t) = ti + (t-sint) 3 + (1 - cost) k j geven by drit) and velocity v(t) is dt acceleration a (t) is given by Now, Now, Vlt) = dř (t) dt. ⇒ ³ (t) = VU Now a(t) = dv (1) dt a 2 (t) = L d (i dt So, we can write and d V (H) dt d (t dt 1² + (1 - cost)j + (0-(-sist)) k 1 + (1-cost)^3 + sist k (t-sint)j + (1-cost)}) (t 0² + (0+ sint) Ĵ + cost k Oi + sist j + Cost k 1 + (1- cost) if + sint k write √ (1) = (1, 1-cost, sint) a(t) = (0, sint, cost)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

TRANSCRIBE THE FOLLOWING TEXT IN DIGITAL FORMAT

Ans. (5)
Given position vector r(t) = (t, t - sint, 1-cost)
7² (t) = t i + (t-sint) j +
ti + (t-sint) j + (1 - cost) k
velocity v (t) is given by dirt and
dt
Now,
acceleration à (t) is
given by
dü (t);
dt
Now, V(t) = d7 (2) = d (ti + (t-sint)j + (1-
cost)})
dt
dt
→ √ (t) =
→ V (H)
1² + (1 - cost) j
3 1 ² + (1 - cost); + (0-1-sind) A
1 + (1-cost) j
C
+ sint k
Now a (t) = dv (1)
dt
→ [a (1)
=
So, we can
and
d
dt
(i + (1 - cost) i + sint k
0² + (0+ sint) ↑ + cost k ...
Oi+ sist
4 cast k
J
write ✓(1)
√(t) = (1, 1-cost, sint)
(0, sint, cost)
a(t) =
Transcribed Image Text:Ans. (5) Given position vector r(t) = (t, t - sint, 1-cost) 7² (t) = t i + (t-sint) j + ti + (t-sint) j + (1 - cost) k velocity v (t) is given by dirt and dt Now, acceleration à (t) is given by dü (t); dt Now, V(t) = d7 (2) = d (ti + (t-sint)j + (1- cost)}) dt dt → √ (t) = → V (H) 1² + (1 - cost) j 3 1 ² + (1 - cost); + (0-1-sind) A 1 + (1-cost) j C + sint k Now a (t) = dv (1) dt → [a (1) = So, we can and d dt (i + (1 - cost) i + sint k 0² + (0+ sint) ↑ + cost k ... Oi+ sist 4 cast k J write ✓(1) √(t) = (1, 1-cost, sint) (0, sint, cost) a(t) =
Expert Solution
steps

Step by step

Solved in 4 steps with 9 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,