Angular momentum and Spin. An electron in an H-atom has orbital angular momentum magnitude and z-component given by L² = 1(1+1)ħ², Lz = m₁h, 1 = 0,1,2,..., n 1 - m₁ = 0, ±1, ±2, ..., ±l 3 S² = s(s+1) h² = =h²₁ 4 Consider an excited electron (n > 1) on an H-atom. The total angular momentum ] = L + Š, whose magnitude and z-component follow a similar dependence to some quantum numbers j and m; as J² = j(j + 1)ħ², Jz = mjħ 1 S₂ = m₂h = ± = h Where j and m; are quantum numbers which assume values that jumps in steps of one such that j is non-negative and −j ≤ m¡ ≤ j. For a given quantum number 1, what are the (two) possible values for j? Clue: we can use the vector sum relation of angular momenta, then consider the z-component only.
Angular momentum and Spin. An electron in an H-atom has orbital angular momentum magnitude and z-component given by L² = 1(1+1)ħ², Lz = m₁h, 1 = 0,1,2,..., n 1 - m₁ = 0, ±1, ±2, ..., ±l 3 S² = s(s+1) h² = =h²₁ 4 Consider an excited electron (n > 1) on an H-atom. The total angular momentum ] = L + Š, whose magnitude and z-component follow a similar dependence to some quantum numbers j and m; as J² = j(j + 1)ħ², Jz = mjħ 1 S₂ = m₂h = ± = h Where j and m; are quantum numbers which assume values that jumps in steps of one such that j is non-negative and −j ≤ m¡ ≤ j. For a given quantum number 1, what are the (two) possible values for j? Clue: we can use the vector sum relation of angular momenta, then consider the z-component only.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps