Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
1 and 5
![**Section 12.7 Higher-Order Derivatives**
### Explanation
The page is from a calculus textbook, focusing on higher-order derivatives. It includes a worked-out example, followed by practice problems.
**Worked Example**
The text demonstrates the process of finding higher-order derivatives of a given implicit function \(2y = e^{xy}\).
- Start with the original equation: \(y^3 = e^{3y}\).
- Differentiate implicitly to find \(\frac{dy}{dx}\).
- Apply the chain rule and solve for \(\frac{d^2y}{dx^2}\).
- Express the final result without \(\frac{dy}{dx}\).
Final expression:
\[
\frac{d^2y}{dx^2} = \frac{2\left(\frac{y - e^y}{2}\right)}{(2 - y)^2} \cdot \frac{2y}{2 - y}
\]
### Practice Problems 12.7
**Problems 1-20: Find the Indicated Derivatives**
1. \(y = 4x^4 - 12x^2 + (x + 2), y'\)
2. \(y = x^4 - x^3 + x^2 + x + 1, y'\)
3. \(y = x^5 + x^4 + x, y'\)
4. \(y = \sin(q + \ln q), \frac{dq}{d\theta}\)
5. \(y = x^2 + 3 \cdot \frac{d^2x}{dx^2}\)
6. \(F(g) = \ln(q + t), \frac{dF}{dg}\)
7. \(f(s) = 3 \ln t, y''\)
8. \(y = \frac{1}{x}, y''\)
9. \(f(g) = \ln \left(2q \cos q\right)\)
10. \(f(x) = \sqrt{x} \cdot f''(x)\)
11. \(f(q) = \sqrt{r} \cdot f'(r)\)
12. \(y = e^{x^2}, y''\)
13. \(y = \frac{2x + 3}{x^4}\)
14. \(y = (3x +](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0e2d6f28-e3d7-414c-b1d4-a752131175c2%2F82cfab03-b4f2-4799-9d2e-b218a0ad8d2e%2F18i1eja.jpeg&w=3840&q=75)
Transcribed Image Text:**Section 12.7 Higher-Order Derivatives**
### Explanation
The page is from a calculus textbook, focusing on higher-order derivatives. It includes a worked-out example, followed by practice problems.
**Worked Example**
The text demonstrates the process of finding higher-order derivatives of a given implicit function \(2y = e^{xy}\).
- Start with the original equation: \(y^3 = e^{3y}\).
- Differentiate implicitly to find \(\frac{dy}{dx}\).
- Apply the chain rule and solve for \(\frac{d^2y}{dx^2}\).
- Express the final result without \(\frac{dy}{dx}\).
Final expression:
\[
\frac{d^2y}{dx^2} = \frac{2\left(\frac{y - e^y}{2}\right)}{(2 - y)^2} \cdot \frac{2y}{2 - y}
\]
### Practice Problems 12.7
**Problems 1-20: Find the Indicated Derivatives**
1. \(y = 4x^4 - 12x^2 + (x + 2), y'\)
2. \(y = x^4 - x^3 + x^2 + x + 1, y'\)
3. \(y = x^5 + x^4 + x, y'\)
4. \(y = \sin(q + \ln q), \frac{dq}{d\theta}\)
5. \(y = x^2 + 3 \cdot \frac{d^2x}{dx^2}\)
6. \(F(g) = \ln(q + t), \frac{dF}{dg}\)
7. \(f(s) = 3 \ln t, y''\)
8. \(y = \frac{1}{x}, y''\)
9. \(f(g) = \ln \left(2q \cos q\right)\)
10. \(f(x) = \sqrt{x} \cdot f''(x)\)
11. \(f(q) = \sqrt{r} \cdot f'(r)\)
12. \(y = e^{x^2}, y''\)
13. \(y = \frac{2x + 3}{x^4}\)
14. \(y = (3x +
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning