& (in/in) fps (ksi) 0.01 230 0.02 255 0.03 260 0.04 264 0.05 268 0.058 270

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

If I need 240 Fps How to calculate? 

& (in/in)
fps (ksi)
0.01
230
0.02
255
0.03
260
0.04
264
0.05
268
0.058
270
Transcribed Image Text:& (in/in) fps (ksi) 0.01 230 0.02 255 0.03 260 0.04 264 0.05 268 0.058 270
Expert Solution
Step 1: Introduction

Given information:

epsilon subscript p left parenthesis i n divided by i n right parenthesis
0.01
0.02
0.03
0.04
0.05
0.058
f subscript p s end subscript left parenthesis k s i right parenthesis
230
255
260
264
268
270

To find:

epsilon subscript p when f subscript p s end subscript equals 240 space k s i.

Concept used:

The concept of interpolation will be used to estimate the value of epsilon subscript p for the given f subscript p s end subscript by approximating it using the provided data points.

Formula used:

The Lagrange interpolation polynomial is given by:
P left parenthesis x right parenthesis equals capital sigma open square brackets f left parenthesis x subscript i right parenthesis cross times L subscript i left parenthesis x right parenthesis close square brackets
Where:
P left parenthesis x right parenthesis is the interpolated polynomial.
x subscript i are the known data points for f subscript p s end subscript.
L subscript i left parenthesis x right parenthesis are the Lagrange basis polynomials.

steps

Step by step

Solved in 3 steps with 26 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,