and e₂= Y₁ = 0 1 [8] [8] 3-8 5 and -3 X2 Let e₁= the images of [²] and y₂ = 8 and let T: R2 R2 be a linear transformation that maps e, into y, and maps e2 into y₂. Find

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Transformation Example**

Let \( \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \( \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \), \( \mathbf{y}_1 = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \), and \( \mathbf{y}_2 = \begin{bmatrix} -1 \\ 8 \end{bmatrix} \), and let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{e}_1 \) into \( \mathbf{y}_1 \) and maps \( \mathbf{e}_2 \) into \( \mathbf{y}_2 \). Find the images of \( \begin{bmatrix} 5 \\ -3 \end{bmatrix} \) and \( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \).

---

The image of \( \begin{bmatrix} 5 \\ -3 \end{bmatrix} \) is \([ \enspace ]\).

---

**Explanation:**

The task is to find the result of a specific linear transformation on given vectors. Here, the basis vectors \( \mathbf{e}_1 \) and \( \mathbf{e}_2 \) in \( \mathbb{R}^2 \) are mapped to new vectors \( \mathbf{y}_1 \) and \( \mathbf{y}_2 \) respectively by the transformation \( T \). Once the transformation matrix is determined, it will be applied to the vector \( \begin{bmatrix} 5 \\ -3 \end{bmatrix} \) to determine its image.
Transcribed Image Text:**Linear Transformation Example** Let \( \mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \( \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \), \( \mathbf{y}_1 = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \), and \( \mathbf{y}_2 = \begin{bmatrix} -1 \\ 8 \end{bmatrix} \), and let \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be a linear transformation that maps \( \mathbf{e}_1 \) into \( \mathbf{y}_1 \) and maps \( \mathbf{e}_2 \) into \( \mathbf{y}_2 \). Find the images of \( \begin{bmatrix} 5 \\ -3 \end{bmatrix} \) and \( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \). --- The image of \( \begin{bmatrix} 5 \\ -3 \end{bmatrix} \) is \([ \enspace ]\). --- **Explanation:** The task is to find the result of a specific linear transformation on given vectors. Here, the basis vectors \( \mathbf{e}_1 \) and \( \mathbf{e}_2 \) in \( \mathbb{R}^2 \) are mapped to new vectors \( \mathbf{y}_1 \) and \( \mathbf{y}_2 \) respectively by the transformation \( T \). Once the transformation matrix is determined, it will be applied to the vector \( \begin{bmatrix} 5 \\ -3 \end{bmatrix} \) to determine its image.
Expert Solution
Step 1: Given the information

Given that e subscript 1 equals open square brackets table row 1 row 0 end table close square brackets and e subscript 2 equals open square brackets table row 0 row 1 end table close square bracketsy subscript 1 equals open square brackets table row 3 row 7 end table close square brackets, and y subscript 2 equals open square brackets table row cell negative 1 end cell row 8 end table close square brackets.

The linear transformation T colon straight real numbers squared rightwards arrow straight real numbers squared such that T open parentheses e subscript 1 close parentheses equals y subscript 1 and T open parentheses e subscript 2 close parentheses equals y subscript 2.

The aim is to find the image of open square brackets table row 5 row cell negative 3 end cell end table close square brackets and open square brackets table row cell x subscript 1 end cell row cell x subscript 2 end cell end table close square brackets.

steps

Step by step

Solved in 4 steps with 17 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,