Analyzing Disaster Situations at Tech Two area hospitals have jointly initiated several planning projects to determine how effectively their emergency facilities can handle disaster-related situations at nearby Tech University. These disasters could be weather related (such as a tornado), a fire, accidents (such as a gas main explosion or a building collapse), or acts of terrorism. One of these projects has focused on the transport of disaster victims from the Tech campus to the two hospitals in the area, Montgomery Regional and Radford Memorial. When a disaster occurs at Tech, emergency vehicles are dispatched from Tech police, local EMT units, hospitals, and local county and city police departments. Victims are brought to a staging area near the disaster scene and wait for transport to one of the two area hospitals. Aspects of the project analysis include the waiting times victims might experience at the disaster scene for emergency vehicles to transport them to the hospital, and waiting times for treatment once victims arrive at the hospital. The project team is analyzing various waiting line models, as follows. (Unless stated otherwise, arrivals are Poisson distributed, and service times are exponentially distributed.) A) First, consider a single-server waiting line model in which the available emergency vehicles are considered to be the server. Assume that victims arrive at the staging area ready to be transported to a hospital on average every 7 minutes and that emergency vehicles are plentiful and available to pick up and transport victims every 4.5 minutes. Compute the average waiting time for victims. Next, assume that the distribution of service times is undefined, with a mean of 4.5 minutes and a standard deviation of 5 minutes. Compute the average waiting time for the victims. B) Next, consider a multiple-server model in which there are eight emergency vehicles available for transporting victims to the hospitals, and the mean time required for a vehicle to pick up and transport a victim to a hospital is 20 minutes. (Assume the same arrival rate as in part a.) Compute the average waiting line, the average waiting time for a victim, and the average time in the system for a victim (waiting and being transported). C) For the multiple-server model in part b, now assume that there are a finite number of victims, 18. Determine the average waiting line, the average waiting time, and the average time in the system.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Analyzing Disaster Situations at Tech

Two area hospitals have jointly initiated several planning projects to determine how effectively their emergency facilities can handle disaster-related situations at nearby Tech University. These disasters could be weather related (such as a tornado), a fire, accidents (such as a gas main explosion or a building collapse), or acts of terrorism. One of these projects has focused on the transport of disaster victims from the Tech campus to the two hospitals in the area, Montgomery Regional and Radford Memorial. When a disaster occurs at Tech, emergency vehicles are dispatched from Tech police, local EMT units, hospitals, and local county and city police departments. Victims are brought to a staging area near the disaster scene and wait for transport to one of the two area hospitals. Aspects of the project analysis include the waiting times victims might experience at the disaster scene for emergency vehicles to transport them to the hospital, and waiting times for treatment once victims arrive at the hospital. The project team is analyzing various waiting line models, as follows. (Unless stated otherwise, arrivals are Poisson distributed, and service times are exponentially distributed.)

A) First, consider a single-server waiting line model in which the available emergency vehicles are considered to be the server. Assume that victims arrive at the staging area ready to be transported to a hospital on average every 7 minutes and that emergency vehicles are plentiful and available to pick up and transport victims every 4.5 minutes. Compute the average waiting time for victims. Next, assume that the distribution of service times is undefined, with a mean of 4.5 minutes and a standard deviation of 5 minutes. Compute the average waiting time for the victims.

B) Next, consider a multiple-server model in which there are eight emergency vehicles available for transporting victims to the hospitals, and the mean time required for a vehicle to pick up and transport a victim to a hospital is 20 minutes. (Assume the same arrival rate as in part a.) Compute the average waiting line, the average waiting time for a victim, and the average time in the system for a victim (waiting and being transported).

C) For the multiple-server model in part b, now assume that there are a finite number of victims, 18. Determine the average waiting line, the average waiting time, and the average time in the system. (Note that a finite calling population model with multiple servers will require the use of the QM for Windows software.)

Expert Solution
steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Software Development Approaches
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education