Analysis 2: The voltage potential, v(t), builds up on the loops, based on the orientation of the magnetic field during an MR scan is given by: v(t) = 0.250t+ + 0.166t3 – 0.500r and the voltage at time t= 0 is 0. 1. Formulate the mathematical model for the voltage rate vr(t) developed at the loops during scanning. 2. Plot/Sketch vr(t) as a function of time t E [-4 : 4]. 3. Find the roots of vr(t) analytically. 4. Use your figure to study the sign of vr(t) in the time interval [-4 : 4]. Does vr(t) have any root in the interval [-4 : 4]? If yes, estimate the roots graphically. 5. Manually use Bisection iterative technique with 6 iterations to find a root of vr(t) in the intervals [0.3 : 0.7] and [-1 :-5]. Calculate the percentage of error. Show details of your steps. 6. Manually use Newton-Raphson iterative technique with 6 iterations to find a root of vr(t) in the intervals [0.3 : 0.7] and [-1 : -5]. Calculate the percentage of error. Show details of your steps.
Analysis 2: The voltage potential, v(t), builds up on the loops, based on the orientation of the magnetic field during an MR scan is given by: v(t) = 0.250t+ + 0.166t3 – 0.500r and the voltage at time t= 0 is 0. 1. Formulate the mathematical model for the voltage rate vr(t) developed at the loops during scanning. 2. Plot/Sketch vr(t) as a function of time t E [-4 : 4]. 3. Find the roots of vr(t) analytically. 4. Use your figure to study the sign of vr(t) in the time interval [-4 : 4]. Does vr(t) have any root in the interval [-4 : 4]? If yes, estimate the roots graphically. 5. Manually use Bisection iterative technique with 6 iterations to find a root of vr(t) in the intervals [0.3 : 0.7] and [-1 :-5]. Calculate the percentage of error. Show details of your steps. 6. Manually use Newton-Raphson iterative technique with 6 iterations to find a root of vr(t) in the intervals [0.3 : 0.7] and [-1 : -5]. Calculate the percentage of error. Show details of your steps.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Answer this question. Part (4), (5) & (6).
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,