An unfair die looks like an ordinary six-sided die but the outcomes are not equally likely. The probability distribution of the face value, XX, is as follows: xixi 1 2 3 4 5 6 Total P(X=xi)P(X=xi) 0.15 0.16 0.33 0.2 0.11 0.05 1 The expected value is computed, E[X]=3.11E[X]=3.11. To find the variance and standard deviation the following table was set up: xixi P(X=xi)P(X=xi) (xi−E[X])2(xi-E[X])2 (xi−E[X])2P(X=xi)(xi-E[X])2P(X=xi) 1 0.15 (1−3.11)2=(−2.11)2=4.4521(1-3.11)2=(-2.11)2=4.4521 4.4521⋅0.15=0.66784.4521⋅0.15=0.6678 2 (2−3.11)2=(−1.11)2=1.2321(2-3.11)2=(-1.11)2=1.2321 1.2321⋅0.16=0.19711.2321⋅0.16=0.1971 3 0.33 (3−3.11)2=(−0.11)2=(3-3.11)2=(-0.11)2= 0.0121⋅0.33=0.0040.0121⋅0.33=0.004 4 0.2 (4−3.11)2=(0.89)2=0.7921(4-3.11)2=(0.89)2=0.7921 0.7921⋅0.2=0.7921⋅0.2= 5 (5−3.11)2=(1.89)2=3.5721(5-3.11)2=(1.89)2=3.5721 3.5721⋅0.11=0.39293.5721⋅0.11=0.3929 6 0.05 8.3521⋅0.05=0.41768.3521⋅0.05=0.4176 E[X]=3.11E[X]=3.11 Total: Fill out the blanks (round to 4 decimals) in the table above and compute the VAR[X] and SD[X]: VAR[X]=VAR[X]= (Round the answer to 4 decimals) SD[X]=SD[X]= (Round the answer to 2 decimals)
An unfair die looks like an ordinary six-sided die but the outcomes are not equally likely. The probability distribution of the face value, XX, is as follows: xixi 1 2 3 4 5 6 Total P(X=xi)P(X=xi) 0.15 0.16 0.33 0.2 0.11 0.05 1 The expected value is computed, E[X]=3.11E[X]=3.11. To find the variance and standard deviation the following table was set up: xixi P(X=xi)P(X=xi) (xi−E[X])2(xi-E[X])2 (xi−E[X])2P(X=xi)(xi-E[X])2P(X=xi) 1 0.15 (1−3.11)2=(−2.11)2=4.4521(1-3.11)2=(-2.11)2=4.4521 4.4521⋅0.15=0.66784.4521⋅0.15=0.6678 2 (2−3.11)2=(−1.11)2=1.2321(2-3.11)2=(-1.11)2=1.2321 1.2321⋅0.16=0.19711.2321⋅0.16=0.1971 3 0.33 (3−3.11)2=(−0.11)2=(3-3.11)2=(-0.11)2= 0.0121⋅0.33=0.0040.0121⋅0.33=0.004 4 0.2 (4−3.11)2=(0.89)2=0.7921(4-3.11)2=(0.89)2=0.7921 0.7921⋅0.2=0.7921⋅0.2= 5 (5−3.11)2=(1.89)2=3.5721(5-3.11)2=(1.89)2=3.5721 3.5721⋅0.11=0.39293.5721⋅0.11=0.3929 6 0.05 8.3521⋅0.05=0.41768.3521⋅0.05=0.4176 E[X]=3.11E[X]=3.11 Total: Fill out the blanks (round to 4 decimals) in the table above and compute the VAR[X] and SD[X]: VAR[X]=VAR[X]= (Round the answer to 4 decimals) SD[X]=SD[X]= (Round the answer to 2 decimals)
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
An unfair die looks like an ordinary six-sided die but the outcomes are not equally likely. The probability distribution of the face value, XX, is as follows:
xixi | 1 | 2 | 3 | 4 | 5 | 6 | Total |
P(X=xi)P(X=xi) | 0.15 | 0.16 | 0.33 | 0.2 | 0.11 | 0.05 | 1 |
The
xixi | P(X=xi)P(X=xi) | (xi−E[X])2(xi-E[X])2 | (xi−E[X])2P(X=xi)(xi-E[X])2P(X=xi) |
1 | 0.15 | (1−3.11)2=(−2.11)2=4.4521(1-3.11)2=(-2.11)2=4.4521 | 4.4521⋅0.15=0.66784.4521⋅0.15=0.6678 |
2 | (2−3.11)2=(−1.11)2=1.2321(2-3.11)2=(-1.11)2=1.2321 | 1.2321⋅0.16=0.19711.2321⋅0.16=0.1971 | |
3 | 0.33 | (3−3.11)2=(−0.11)2=(3-3.11)2=(-0.11)2= | 0.0121⋅0.33=0.0040.0121⋅0.33=0.004 |
4 | 0.2 | (4−3.11)2=(0.89)2=0.7921(4-3.11)2=(0.89)2=0.7921 | 0.7921⋅0.2=0.7921⋅0.2= |
5 | (5−3.11)2=(1.89)2=3.5721(5-3.11)2=(1.89)2=3.5721 | 3.5721⋅0.11=0.39293.5721⋅0.11=0.3929 | |
6 | 0.05 | 8.3521⋅0.05=0.41768.3521⋅0.05=0.4176 | |
E[X]=3.11E[X]=3.11 | Total: |
Fill out the blanks (round to 4 decimals) in the table above and compute the VAR[X] and SD[X]:
VAR[X]=VAR[X]= (Round the answer to 4 decimals)
SD[X]=SD[X]= (Round the answer to 2 decimals)
Expert Solution
Step 1
Given:
The probability distribution of the face value is:
xi | 1 | 2 | 3 | 4 | 5 | 6 | Total |
P(X=xi) | 0.15 | 0.16 | 0.33 | 0.2 | 0.11 | 0.05 | 1 |
E[X]=3.11
Step by step
Solved in 2 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman