An undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a vertical deformation of 21 mm. The failure plane was inclined at 50° to the horizontal and the cell pressure was 300 kN/m². i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine: - Coulomb's equation for the shear strength of the soil, in terms of total stress; - the magnitude and obliquity of the resultant stress on the failure plane.
An undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a vertical deformation of 21 mm. The failure plane was inclined at 50° to the horizontal and the cell pressure was 300 kN/m². i. Draw the Mohr circle diagram representing the above stress conditions, and from it determine: - Coulomb's equation for the shear strength of the soil, in terms of total stress; - the magnitude and obliquity of the resultant stress on the failure plane.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question

Transcribed Image Text:An undisturbed soil sample, 110 mm in diameter and 220 mm in height, was tested in a
triaxial machine. The sample sheared under an additional axial load of 3.35 kN with a
vertical deformation of 21 mm. The failure plane was inclined at 50° to the horizontal and
the cell pressure was 300 kN/m².
i. Draw the Mohr circle diagram representing the above stress conditions, and from it
determine:
- Coulomb's equation for the shear strength of the soil, in terms of total stress;
- the magnitude and obliquity of the resultant stress on the failure plane.
ii. A further undisturbed sample of the soil was tested in a shear box under the same
drainage conditions as used for the previous test. If the area of the box was 3600 mm? and
the normal load was 500 N, what would you expect the failure stress to have been?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 6 steps with 5 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning