An SRS of 350 high school seniors gained an average of x¯=24 points in their second attempt at the SAT Mathematics exam. Assume that the change in score has a Normal distribution with standard deviation σ=48. You can find the critical values to three decimal places by using the last row in table C. (a) Find a 99% confidence interval for the mean change in score μ in the population of all high school seniors. (Enter your answers rounded to two decimal places.)   lower bound of confidence interval=   upper bound of confidence interval=     (b) What is the margin of error for 99% ? (Enter your answer rounded to two decimal places.)   margin of error=     (c) Suppose we had an SRS of just 100 high school seniors. What would be the margin of error for 99% confidence? (Enter your answer rounded to three decimal places.)   margin of error=     (d) How does decreasing the sample size change the margin of error of a confidence interval when the confidence level and population standard deviation remain the same?   A) Decreasing the sample size increases the margin of error, provided the confidence level and population standard deviation also decrease.   B) Decreasing the sample size keeps the margin of error the same, provided the confidence level and population standard deviation remain the same.   C) Decreasing the sample size increases the margin of error, provided the confidence level and population standard deviation remain the same.   D) Decreasing the sample size decreases the margin of error, provided the confidence level and population standard deviation remain the same

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

An SRS of 350 high school seniors gained an average of x¯=24 points in their second attempt at the SAT Mathematics exam. Assume that the change in score has a Normal distribution with standard deviation σ=48.

You can find the critical values to three decimal places by using the last row in table C.

(a) Find a 99% confidence interval for the mean change in score μ in the population of all high school seniors. (Enter your answers rounded to two decimal places.)

 
lower bound of confidence interval=
 
upper bound of confidence interval=
 
 
(b) What is the margin of error for 99% ? (Enter your answer rounded to two decimal places.)
 
margin of error=
 
 
(c) Suppose we had an SRS of just 100 high school seniors. What would be the margin of error for 99% confidence? (Enter your answer rounded to three decimal places.)
 
margin of error=
 
 
(d) How does decreasing the sample size change the margin of error of a confidence interval when the confidence level and population standard deviation remain the same?
 
A) Decreasing the sample size increases the margin of error, provided the confidence level and population standard deviation also decrease.
 
B) Decreasing the sample size keeps the margin of error the same, provided the confidence level and population standard deviation remain the same.
 
C) Decreasing the sample size increases the margin of error, provided the confidence level and population standard deviation remain the same.
 
D) Decreasing the sample size decreases the margin of error, provided the confidence level and population standard deviation remain the same.
 
 
TABLES
699
Table entry for C is the critical value
t* required for confidence level C.
To approximate one- and two-sided
P-values, compare the value of the t
Tail area
statistic with the critical values of t*
Area C
that match the P-values given at the
bottom of the table.
t*
TABLE C t distribution critical values
Confidence level C
Degrees of
freedom
50%
60%
70%
80%
90%
95%
96%
98%
99%
99.5%
99.8%
99.9%
1
1.000
1.376
1.963
3.078
6.314
12.71
15.89
31.82
63.66
127.3
318.3
636.6
0.816
1.061
1.386
1.886
2.920
4.303
4.849
6.965
9.925
14.09
22.33
31.60
1.250
7.453
5.598
3
0.765
0.978
1.638
2.353
3.182
3.482
4.541
5.841
10.21
12.92
4
0.741
0.941
1.190
1.533
2.132
2.776
2.999
3.747
4.604
7.173
8.610
0.727
0.920
1.156
1.476
2.015
2.571
2.757
3.365
4.032
4.773
5.893
6.869
6.
0.718
0.906
1.134
1.440
1.943
2.447
2.612
3.143
3.707
5.208
4.317
4.029
5.959
7
0.711
0.896
1.119
1.415
1.895
2.365
2.517
2.998
3.499
4.785
5.408
8
0.706
0.889
1.108
1.397
1.860
2.306
2.449
2.896
3.355
3.833
4.501
5.041
9.
0.703
0.883
1.100
1.383
1.833
2.262
2.398
2.821
3.250
3.690
4.297
4.781
10
0.700
0.879
1.093
1.372
1.812
2.228
2.359
2.764
3.169
3.581
4.144
4.587
11
0.697
0.876
1.088
1.363
1.796
2.201
2.328
2.718
3.106
3.497
4.025
4.437
12
0.695
0.873
1.083
1.356
1.782
2.179
2.303
2.681
3.055
3.428
3.930
4.318
13
0.694
0.870
1.079
1.350
1.771
2.160
2.282
2.650
3.012
3.372
3.852
4.221
14
0.692
0.868
1.076
1.345
1.761
2.145
2.264
2.624
2.977
3.326
3.787
4.140
15
0.691
0.866
1.074
1.341
1.753
2.131
2.249
2.602
2.947
3.286
3.733
4.073
16
0.690
0.865
1.071
1.337
1.746
2.120
2.235
2.583
2.921
3.252
3.686
4.015
17
0.689
0.863
1.069
1.333
1.740
2.110
2.224
2.567
2.898
3.222
3.646
3.965
18
0.688
0.862
1.067
1.330
1.734
2.101
2.214
2.552
2.878
3.197
3.611
3.922
1.066
1.064
1.729
1.725
19
0.688
0.861
1.328
2.093
2.205
2.539
2.861
3.174
3.579
3.883
20
0.687
0.860
1.325
2.086
2.197
2.528
2.845
3.153
3.552
3.850
1.063
1.323
3.135
3.527
3.505
21
0.686
0.859
1.721
2.080
2.189
2.518
2.831
3.819
0.858
0.858
22
0.686
1.061
1.321
1.717
2.074
2.183
2.508
2.819
3.119
3.792
23
0.685
1.060
1.319
3.485
1.714
1.711
2.069
2.177
2.500
2.807
3.104
3.768
24
0.685
0.857
1.059
1.318
2.064
2.172
2.492
2.797
3.091
3.467
3.745
25
0.684
0.856
1.058
1.316
1.708
2.060
2.167
2.485
2.787
3.078
3.450
3.725
26
0.684
0.856
1.058
1.315
1.706
2.056
2.162
2.479
2.779
3.067
3.435
3.707
27
0.684
0.855
1.057
1.314
1.703
2.052
2.158
2.473
2.771
3.057
3.421
3.690
28
0.683
0.855
1.056
1.313
1.701
2.048
2.154
2.467
2.763
3.047
3.408
3.674
29
0.683
0.854
1.055
1.311
1.699
2.045
2.150
2.462
2.756
3.038
3.396
3.659
30
0.683
0.854
1.055
1.310
1.697
2.042
2.147
2.457
2.750
3.030
3.385
3.646
40
0.681
0.851
1.050
1.303
1.684
2.021
2.123
2.423
2.704
2.971
3.307
3.551
0.679
0.679
50
0.849
1.047
1.299
1.676
2.009
2.109
2.403
2.678
2.937
3.261
3.496
60
0.848
1.045
1.296
1.671
2.000
2.099
2.390
2.660
2.915
3.232
3.460
80
0.678
0.846
1.043
1.292
1.664
1.990
2.088
2.374
2.639
2.887
3.195
3.416
100
0.677
0.845
1.042
1.290
1.660
1.984
2.081
2.364
2.626
2.871
3.174
3.390
1000
0.675
0.842
1.037
1.282
1.646
1.962
2.056
2.330
2.581
2.813
3.098
3.300
0.674
0.841
1.036
1.282
1.645
1.960
2.054
2.326
2.576
2.807
3.091
3.291
One-sided P
.25
.20
.15
.10
.05
.025
.02
.01
.005
.0025
.001
.0005
Two-sided P
.50
.40
.30
.20
.10
.05
.04
.02
.01
.005
.002
.001
Transcribed Image Text:TABLES 699 Table entry for C is the critical value t* required for confidence level C. To approximate one- and two-sided P-values, compare the value of the t Tail area statistic with the critical values of t* Area C that match the P-values given at the bottom of the table. t* TABLE C t distribution critical values Confidence level C Degrees of freedom 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60 1.250 7.453 5.598 3 0.765 0.978 1.638 2.353 3.182 3.482 4.541 5.841 10.21 12.92 4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 7.173 8.610 0.727 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869 6. 0.718 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 5.208 4.317 4.029 5.959 7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.785 5.408 8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041 9. 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781 10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587 11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437 12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318 13 0.694 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073 16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015 17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965 18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922 1.066 1.064 1.729 1.725 19 0.688 0.861 1.328 2.093 2.205 2.539 2.861 3.174 3.579 3.883 20 0.687 0.860 1.325 2.086 2.197 2.528 2.845 3.153 3.552 3.850 1.063 1.323 3.135 3.527 3.505 21 0.686 0.859 1.721 2.080 2.189 2.518 2.831 3.819 0.858 0.858 22 0.686 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.792 23 0.685 1.060 1.319 3.485 1.714 1.711 2.069 2.177 2.500 2.807 3.104 3.768 24 0.685 0.857 1.059 1.318 2.064 2.172 2.492 2.797 3.091 3.467 3.745 25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725 26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707 27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690 28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674 29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659 30 0.683 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646 40 0.681 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551 0.679 0.679 50 0.849 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496 60 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460 80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416 100 0.677 0.845 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174 3.390 1000 0.675 0.842 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098 3.300 0.674 0.841 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091 3.291 One-sided P .25 .20 .15 .10 .05 .025 .02 .01 .005 .0025 .001 .0005 Two-sided P .50 .40 .30 .20 .10 .05 .04 .02 .01 .005 .002 .001
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Point Estimation, Limit Theorems, Approximations, and Bounds
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman