an overhead view of a ring that can rotate about its center like a merrygo- round. Its outer radius R2 is 0.800 m, its inner radius R1 is R2/2.00, its mass M is 8.00 kg, and the mass of the crossbars at its center is negligible. It initially rotates at an angular speed of 8.00 rad/s with a cat of massm M/4.00 on its outer edge, at radius R2. By how much does the cat increase the kinetic energy of the cat–ring system if the cat crawls to the inner edge, at radius R1?
Angular Momentum
The momentum of an object is given by multiplying its mass and velocity. Momentum is a property of any object that moves with mass. The only difference between angular momentum and linear momentum is that angular momentum deals with moving or spinning objects. A moving particle's linear momentum can be thought of as a measure of its linear motion. The force is proportional to the rate of change of linear momentum. Angular momentum is always directly proportional to mass. In rotational motion, the concept of angular momentum is often used. Since it is a conserved quantity—the total angular momentum of a closed system remains constant—it is a significant quantity in physics. To understand the concept of angular momentum first we need to understand a rigid body and its movement, a position vector that is used to specify the position of particles in space. A rigid body possesses motion it may be linear or rotational. Rotational motion plays important role in angular momentum.
Moment of a Force
The idea of moments is an important concept in physics. It arises from the fact that distance often plays an important part in the interaction of, or in determining the impact of forces on bodies. Moments are often described by their order [first, second, or higher order] based on the power to which the distance has to be raised to understand the phenomenon. Of particular note are the second-order moment of mass (Moment of Inertia) and moments of force.
an
overhead view of a ring that can
rotate about its center like a merrygo-
round. Its outer radius R2 is
0.800 m, its inner radius R1 is R2/2.00,
its mass M is 8.00 kg, and the mass of
the crossbars at its center is negligible.
It initially rotates at an angular
speed of 8.00 rad/s with a cat of
massm M/4.00 on its outer edge, at
radius R2. By how much does the cat increase the kinetic energy of
the cat–ring system if the cat crawls to the inner edge, at radius R1?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 3 images