An organization advocating for tax simplification has proposed the implementation of an alternative flat tax system to replace the existing Federal income tax. Featuring a very simple two-line tax form – How much money did you make? Send it In an attempt to identify the partisan nature of support for their proposal, the tax reformers have conducted a simple survey. They collected random samples of n1 = 120 Republican voters and n2 = 80 Democrat voters, polled the sampled respondents and noted for each group the number of voters who favor the flat tax proposal. The results of the survey are summarized in the table below. Political Affiliation Favor (X) Total (n) Proportion (X/n) Republican 90 120 p-hat1 = 90/120 = 0.75 Democrat 50 80 p-hat2 = 50/80 = 0.625 Total 140 200 p-hat = 140/200 = 0.700   c. The bottom-line issue, with respect to Democratic support for the flat tax, is whether or not Democrats, as a group, favor the flat tax. Do the survey data provide sufficient evidence to conclude that the proportion of Democrats favoring the flat tax exceeds 5? Conduct your test at the α = 0.05 level of significance and report the p-value for your test d. Our tax reformers now turn to a comparative analysis of Republican versus Democratic support for the proposed flat tax. Estimate the difference [Republican - Democrat] between the proportions of individuals who favor the flat tax proposal and develop a 95% confidence interval for the estimated difference. e. Is there sufficient evidence, based upon the survey data, to conclude that the difference in proportions, [Republican - Democrat], that favor the proposed flat tax is significant (significantly different from zero?) Conduct your test at the α = 0.05 level of significance and report the p-value for your test. Be sure to identify the hypotheses to be tested and state your conclusion in managerial

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

An organization advocating for tax simplification has proposed the implementation of an alternative flat tax system to replace the existing Federal income tax.

Featuring a very simple two-line tax form –

  1. How much money did you make?
  2. Send it

In an attempt to identify the partisan nature of support for their proposal, the tax reformers have conducted a simple survey. They collected random samples of

n1 = 120 Republican voters and n2 = 80 Democrat voters, polled the sampled respondents and noted for each group the number of voters who favor the flat tax proposal. The results of the survey are summarized in the table below.

Political Affiliation

Favor (X)

Total (n)

Proportion (X/n)

Republican

90

120

p-hat1 = 90/120 = 0.75

Democrat

50

80

p-hat2 = 50/80 = 0.625

Total

140

200

p-hat = 140/200 = 0.700

 

c. The bottom-line issue, with respect to Democratic support for the flat tax, is whether or not Democrats, as a group, favor the flat tax. Do the survey data provide sufficient evidence to conclude that the proportion of Democrats favoring the flat tax exceeds 5? Conduct your test at the α = 0.05 level of significance and report the p-value for your test

d. Our tax reformers now turn to a comparative analysis of Republican versus Democratic support for the proposed flat tax. Estimate the difference [Republican - Democrat] between the proportions of individuals who favor the flat tax proposal and develop a 95% confidence interval for the estimated difference.

e. Is there sufficient evidence, based upon the survey data, to conclude that the difference in proportions, [Republican - Democrat], that favor the proposed flat tax is significant (significantly different from zero?) Conduct your test at the α = 0.05 level of significance and report the p-value for your test. Be sure to identify the hypotheses to be tested and state your conclusion in managerial

Proportions Estimation and Testing Problem
Table 1b: Normal Curve Upper-Half Cumulative Areas
Zo
Table Entries are Standard Normal Distribution Cumulative Probabilities, Pr{Z < Zo}
0.07 0.08 0.09
0.06
5239 5279
.5319 .5359
.5636 5675 .5714 .5753
6064 .6103 .6141
6443 .6480 .6517
.5910 5948
.6026
.6368
.6406
.6736
.6772
6808
.6844 .6879
.7123 7157
.7190
.7224
.7454 7486 .7517 .7549
.7764 7794
.7823
.7852
.8133
Zo 0.00 0.01 0.02 0.03 0.04 0.05
0.0 5000 5040 .5080 5120 5160 .5199
0.1 5398 5438 .5478 5517 5557 .5596
0.2 5793 5832 .5871
.5987
0.3 .6179 6217 .6255 .6293 .6331
0.4 .6554 .6591 .6628 .6664 6700
0.5 .6915 6950 .6985 .7019 7054 .7088
0.6 .7257 7291 .7324 .7357 .7389 .7422
0.7 .7580 7611 .7642 .7673 .7704 .7734
0.8 .7881 7910 .7939 .7967 7995 .8023
0.9 8159 8186 .8212 .8238 .8264 .8289
1.0 8413 8438 .8461 .8485 .8508
1.1 8643 8665 .8686 .8708 8729
1.2 8849 .8869 .8888 .8907 8925
1.3 9032 9049 .9066 .9082 9099
1.4 .9192 9207 .9222 .9236 9251 .9265
1.5 9332 9345
.9357 .9370 9382 .9394
1.6 9452 9463 .9474 .9484 9495 .9505
1.7 .9554 9564 .9573 .9582 9591 .9589
.9625
1.8 .9641 9649
.9678 .9686 9693 .9699
.8051 8079 .8106
.8315 8340 .8365
.8554 8577 .8599
.8389
.8621
.8830
.8531
.8749 .8770 8790 .8810
.8944 .8962 8980 .8997
.9115 .9131 9147
.9279 9292
.9015
.9162 .9177
.9306 .9319
.9406 9418 9429 9441
.9515 9525
.9608 9616
.9535
.9545
.9633
.9656
.9664
9671
.9706
1.9 9713 9719
.9726
.9732
9756 .9761
.9767
9808 .9812
9817
9850 .9854
.9857
9884 .9887
.9890
9738 .9744 .9750
2.0 .9773 9778 .9783 9788 9793 .9798
9603
2.1 9821 9826 .9830 .9634 9838 .9842 .9846
2.2 9861 9864 .9868 .9671 9875 .9878 .9681
2.3 9893 9896 .9898 .9901 9904 .9906 .9909 9911 .9913 .9916
2.4 9918 9920 .9922 .9925 9927 .9929 .9931 9932 .9934 .9936
2.5 993790 993963 994132 994297 .994457 994614 994766 994915 995060 995201
2.6 995339 995473 995604 995731 995855 995975 996093 996207 996319 996427
2.7 996533 996636 996736 996833 996928 997020 997110 .997197 997282 997365
2.8 997445 997523 997599 997673 .997744 997814 997882 997948 998012998074
2.9 998134 998193 998250 996305 .998359 998411 998462 998511 998559 998605
3.0 998650 998694 998736 998777 .998817 998856 998893 .998930 998965 998999
3.1 999032 999065 999096 999126 999155 999184 999211.999238 999264 999289
3.2 999313 999336 999359 999381 .999402 999423 999443 .999462 999481 999499
3.3 999517 999534 999550 999566 999581 999596 999610 999624 999638 999651
3.4 999663 999675 999687 999698 .999709 999720 999730 .999740 999749 999758
3.5 999767 .999776 999784 999792 .999800 999807 999815 .999822 999828 999835
in
5
Transcribed Image Text:Proportions Estimation and Testing Problem Table 1b: Normal Curve Upper-Half Cumulative Areas Zo Table Entries are Standard Normal Distribution Cumulative Probabilities, Pr{Z < Zo} 0.07 0.08 0.09 0.06 5239 5279 .5319 .5359 .5636 5675 .5714 .5753 6064 .6103 .6141 6443 .6480 .6517 .5910 5948 .6026 .6368 .6406 .6736 .6772 6808 .6844 .6879 .7123 7157 .7190 .7224 .7454 7486 .7517 .7549 .7764 7794 .7823 .7852 .8133 Zo 0.00 0.01 0.02 0.03 0.04 0.05 0.0 5000 5040 .5080 5120 5160 .5199 0.1 5398 5438 .5478 5517 5557 .5596 0.2 5793 5832 .5871 .5987 0.3 .6179 6217 .6255 .6293 .6331 0.4 .6554 .6591 .6628 .6664 6700 0.5 .6915 6950 .6985 .7019 7054 .7088 0.6 .7257 7291 .7324 .7357 .7389 .7422 0.7 .7580 7611 .7642 .7673 .7704 .7734 0.8 .7881 7910 .7939 .7967 7995 .8023 0.9 8159 8186 .8212 .8238 .8264 .8289 1.0 8413 8438 .8461 .8485 .8508 1.1 8643 8665 .8686 .8708 8729 1.2 8849 .8869 .8888 .8907 8925 1.3 9032 9049 .9066 .9082 9099 1.4 .9192 9207 .9222 .9236 9251 .9265 1.5 9332 9345 .9357 .9370 9382 .9394 1.6 9452 9463 .9474 .9484 9495 .9505 1.7 .9554 9564 .9573 .9582 9591 .9589 .9625 1.8 .9641 9649 .9678 .9686 9693 .9699 .8051 8079 .8106 .8315 8340 .8365 .8554 8577 .8599 .8389 .8621 .8830 .8531 .8749 .8770 8790 .8810 .8944 .8962 8980 .8997 .9115 .9131 9147 .9279 9292 .9015 .9162 .9177 .9306 .9319 .9406 9418 9429 9441 .9515 9525 .9608 9616 .9535 .9545 .9633 .9656 .9664 9671 .9706 1.9 9713 9719 .9726 .9732 9756 .9761 .9767 9808 .9812 9817 9850 .9854 .9857 9884 .9887 .9890 9738 .9744 .9750 2.0 .9773 9778 .9783 9788 9793 .9798 9603 2.1 9821 9826 .9830 .9634 9838 .9842 .9846 2.2 9861 9864 .9868 .9671 9875 .9878 .9681 2.3 9893 9896 .9898 .9901 9904 .9906 .9909 9911 .9913 .9916 2.4 9918 9920 .9922 .9925 9927 .9929 .9931 9932 .9934 .9936 2.5 993790 993963 994132 994297 .994457 994614 994766 994915 995060 995201 2.6 995339 995473 995604 995731 995855 995975 996093 996207 996319 996427 2.7 996533 996636 996736 996833 996928 997020 997110 .997197 997282 997365 2.8 997445 997523 997599 997673 .997744 997814 997882 997948 998012998074 2.9 998134 998193 998250 996305 .998359 998411 998462 998511 998559 998605 3.0 998650 998694 998736 998777 .998817 998856 998893 .998930 998965 998999 3.1 999032 999065 999096 999126 999155 999184 999211.999238 999264 999289 3.2 999313 999336 999359 999381 .999402 999423 999443 .999462 999481 999499 3.3 999517 999534 999550 999566 999581 999596 999610 999624 999638 999651 3.4 999663 999675 999687 999698 .999709 999720 999730 .999740 999749 999758 3.5 999767 .999776 999784 999792 .999800 999807 999815 .999822 999828 999835 in 5
Proportions Estimation and Testing Problem
Table 1a: Normal Curve Lower-Half Cumulative Areas
Zo
Table Entries are Standard Normal Distribution Cumulative Probabilities, Pr{Z <zo]
Zo 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.06 0.09
-3.5 000233 000224 000216 000208 .000200000193 000185 .000178 .000172 000165
-3.4 000337 .000325 000313 000302 .000291 000280 000270 .000260 000251 000242
-3.3 000483 .000466 000450 000434 .000419 000404 000390 .000376 .000362 000349
-3.2 .000687 .000664 000641 000619 000598 000577 000557 000538 .000519 000501
-3.1 .000968 .000935 000904 000874 000845 .000816 000789 .000762 .000736 000711
-3.0 .001350 .001306 .001264 001223 .001183 .001144 001107 .001070 .001035 .001001
-2.9 001866 .001807 .001750 001695 .001641 .001589 001538 .001489 .001441 001395
-2.8 .002555 .002477 .002401 002327 .002256 002186 002118 .002052 .001988 001926
-2.7 003467 .003364 003264 003167 .003072 002980 002890 .002803 .002718 002635
-26 004661 004527 004396 004269 .004145 004025 003907 003793 .003681 003573
-2.5 006210.006037 .005868 005703 .005543 .005386 005234 005085 004940 004799
-2.4 0062 0080 .0078 .0075 .0073 .0071 .0069
-23 0107 0104 0102 .0099 0096 0094
.0129 0125
0162 0158
0068 0066
.0064
.0091
0089
0067
.0084
-2.2 .0139 0136 0132
0122 .0119 .0116
.0154
-2.1 .0179 0174 0170 .0166
-2.0 .0228 0222
0217
.0212
0207
0202
.0197
-1.9 .0287 0281 0274
0256
.0250
-1.8 .0359 .0351
0322
.0314
-1.7 .0446 .0436 0427
0401 .0392
.0268
0344 .0336
.0418
.0262
.0329
0409
1515
1762
2033
2266
2578
0113
.0150 0146
.0192
0188
-1.6 .0548 .0637
0526 .0516
.0505
0495 .0485
-1.5 .0668
.0618
0606 0594
.0749 0735
.0901 0885 0869 .0853 0638 0823
.1075 1057 1038 .1020 -1003 0965
.1271 .1251 1230 .1210 -1190 -1170
.1492 1469 1446 .1423 1401 1379
1711 1685 .1660
.1736
.1635
1611
.2005
.1977
.1922 .1894
1867
.0655 0643 .0630
-1.4 .0808 .0793 0778 .0764
-1.3 .0968 .0951 0934 0918
-1.2 1151 .1131 1112 1093
-1.1 1357 .1335 1314 1292
-1.0 1587 .1562 1539
-0.9 -1841 .1814 -1788
-0.8 2119 2090 2061
-0.7 2420 2389 2358 2327
-0.6 2743 .2709 2676 2643 .2611
-0.5 3085 .3050 3015 2981
-0.4 3446 .3409 3372 3336
-0.3 3821 .3783 .3745 3707
-0.2 4207 .4168 .4129
4090 4052
-0.1 4602 .4562 .4522 4483 .4443
0.0 5000 .4960 .4920 4880 4840
1949
2236 .2207 2177
.2297
2546 2514 .2483
2946
2912
2877
3264
.3300
3228
.3669 3632 3594
.4013 3974
.0244 0239
.0307 0301
.0384 0375
.4404 4364
.4801
.0475 0465
.0582
0571
0721 .0708
0694
4325
4761 4721
.0110
.0143
.0183
.0233
.0294
0367
0455
0559
0681
2843 2810 2776
.3192 .3156 3121
.3557 3520 3483
3936 .3897 3859
4247
4641
4
.4286
.4681
2148
2451
Transcribed Image Text:Proportions Estimation and Testing Problem Table 1a: Normal Curve Lower-Half Cumulative Areas Zo Table Entries are Standard Normal Distribution Cumulative Probabilities, Pr{Z <zo] Zo 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.06 0.09 -3.5 000233 000224 000216 000208 .000200000193 000185 .000178 .000172 000165 -3.4 000337 .000325 000313 000302 .000291 000280 000270 .000260 000251 000242 -3.3 000483 .000466 000450 000434 .000419 000404 000390 .000376 .000362 000349 -3.2 .000687 .000664 000641 000619 000598 000577 000557 000538 .000519 000501 -3.1 .000968 .000935 000904 000874 000845 .000816 000789 .000762 .000736 000711 -3.0 .001350 .001306 .001264 001223 .001183 .001144 001107 .001070 .001035 .001001 -2.9 001866 .001807 .001750 001695 .001641 .001589 001538 .001489 .001441 001395 -2.8 .002555 .002477 .002401 002327 .002256 002186 002118 .002052 .001988 001926 -2.7 003467 .003364 003264 003167 .003072 002980 002890 .002803 .002718 002635 -26 004661 004527 004396 004269 .004145 004025 003907 003793 .003681 003573 -2.5 006210.006037 .005868 005703 .005543 .005386 005234 005085 004940 004799 -2.4 0062 0080 .0078 .0075 .0073 .0071 .0069 -23 0107 0104 0102 .0099 0096 0094 .0129 0125 0162 0158 0068 0066 .0064 .0091 0089 0067 .0084 -2.2 .0139 0136 0132 0122 .0119 .0116 .0154 -2.1 .0179 0174 0170 .0166 -2.0 .0228 0222 0217 .0212 0207 0202 .0197 -1.9 .0287 0281 0274 0256 .0250 -1.8 .0359 .0351 0322 .0314 -1.7 .0446 .0436 0427 0401 .0392 .0268 0344 .0336 .0418 .0262 .0329 0409 1515 1762 2033 2266 2578 0113 .0150 0146 .0192 0188 -1.6 .0548 .0637 0526 .0516 .0505 0495 .0485 -1.5 .0668 .0618 0606 0594 .0749 0735 .0901 0885 0869 .0853 0638 0823 .1075 1057 1038 .1020 -1003 0965 .1271 .1251 1230 .1210 -1190 -1170 .1492 1469 1446 .1423 1401 1379 1711 1685 .1660 .1736 .1635 1611 .2005 .1977 .1922 .1894 1867 .0655 0643 .0630 -1.4 .0808 .0793 0778 .0764 -1.3 .0968 .0951 0934 0918 -1.2 1151 .1131 1112 1093 -1.1 1357 .1335 1314 1292 -1.0 1587 .1562 1539 -0.9 -1841 .1814 -1788 -0.8 2119 2090 2061 -0.7 2420 2389 2358 2327 -0.6 2743 .2709 2676 2643 .2611 -0.5 3085 .3050 3015 2981 -0.4 3446 .3409 3372 3336 -0.3 3821 .3783 .3745 3707 -0.2 4207 .4168 .4129 4090 4052 -0.1 4602 .4562 .4522 4483 .4443 0.0 5000 .4960 .4920 4880 4840 1949 2236 .2207 2177 .2297 2546 2514 .2483 2946 2912 2877 3264 .3300 3228 .3669 3632 3594 .4013 3974 .0244 0239 .0307 0301 .0384 0375 .4404 4364 .4801 .0475 0465 .0582 0571 0721 .0708 0694 4325 4761 4721 .0110 .0143 .0183 .0233 .0294 0367 0455 0559 0681 2843 2810 2776 .3192 .3156 3121 .3557 3520 3483 3936 .3897 3859 4247 4641 4 .4286 .4681 2148 2451
Expert Solution
Step 1

Political Affiliation

Favor (X)

Total (n)

Proportion (X/n)

Republican

90

120

p-hat1 = 90/120 = 0.75

Democrat

50

80

p-hat2 = 50/80 = 0.625

Total

140

200

p-hat = 140/200 = 0.700

steps

Step by step

Solved in 4 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman