An oil pump is drawing 18 kW of electric power while pumping oil with density 860 kg/m³ at a rate of 0.1 m³/s. The inlet and outlet diameters of the pipe are 8 cm and 17 cm, respectively. I the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 95 percent, determine the mechanical efficiency of the pump. Take the kinetic energy correction factor as 1.05. Pump Q 8 cm Oil Docm AP = 250 kPa 18 kW Motor

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
An oil pump is drawing 18 kW of electric power while pumping
oil with density 860 kg/m³ at a rate of 0.1 m³/s. The inlet and
outlet diameters of the pipe are 8 cm and 17 cm, respectively. If
the pressure rise of oil in the pump is measured to be 250 kPa
and the motor efficiency is 95 percent, determine the
mechanical efficiency of the pump. Take the kinetic energy
correction factor as 1.05.
Pump
8 cm
Docm
ΔΡ = 250 kPa
18 kW
s
Motor
Oil
0.1 m³/s
The mechanical efficiency of the pump is
%.
Transcribed Image Text:An oil pump is drawing 18 kW of electric power while pumping oil with density 860 kg/m³ at a rate of 0.1 m³/s. The inlet and outlet diameters of the pipe are 8 cm and 17 cm, respectively. If the pressure rise of oil in the pump is measured to be 250 kPa and the motor efficiency is 95 percent, determine the mechanical efficiency of the pump. Take the kinetic energy correction factor as 1.05. Pump 8 cm Docm ΔΡ = 250 kPa 18 kW s Motor Oil 0.1 m³/s The mechanical efficiency of the pump is %.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Pressurized pipe flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning