= An observer at origin of inertial frame S sees a flashbulb go off at x = 190km, y 20km, and z = 0km at time t = 5 x 10-4s. At what time and position in the S' system did the flash occur, if S' is moving along shared x-direction with S at a velocity v = 0.8c? Let the origins of frame S and frame S' coincide at time t = 0 and t'= 0. Hint The time (in units of 10-4s) and position (in units of km) of the flash is [Format hint: Specify your answer as a 4-tuple, for example, (2, 100, 5, 1), for a flash occurring at 2 x 10-s at the location of (x = 100km, y = 5km, z = 1km).]
Q: Suppose a rocket starts from rest on Earth (frame S) and accelerates at a rate of 1000 m/sec² (as…
A: To solve this problem, we can use the principles of special relativity. We can start by calculating…
Q: A spaceship leaves Earth traveling 0.65c. A second spaceship leaves the first a a speed of 0.92c…
A: A spaceship leaves Earth traveling at the speed of 0.65c. The second spaceship leaves the first at…
Q: Two events occur in an inertial system K as follows: Event 1: x₁= a, t₁ = 2a/c, y₁ = 0, 2₁ = 0 Event…
A: Two events occur in an inertial system K where Event 1 has co-ordinatesand Event 2 has the…
Q: A light flashes at position x = 0 m. One microsecond later, a light flashes at position x = 1000 m.…
A: In first reference frame S, Spatial interval of the event, ∆x=1000 m-0 m =1000 m Temporal…
Q: An object moves at a speed of 0.80 in the +x direction, as measured in the Home Frame. What is its…
A:
Q: alculate the interval Δs2 between two events with coordinates (x1 = 55m, y1 = 0m, z1 = 0m, t1 = 1…
A:
Q: Deep space resupply. A rocket (frame S′) bound for Planet X leaves Earth (frame S) traveling at…
A: Spacetime Diagrams for Deep Space Resupply
Q: An object is moving with ordinary speed 0.5c in S reference frame along a direction making an angle…
A: Given:magnitude of ordinary velocity, u = 0.5 cangle mad by velocity with postive x−axis, θ =…
Q: A plank, fixed to a sled at rest in a stationary frame S, is of length L, and makes an angle of 44'…
A: GivenInitial length=L0and angleθ0=44°Later slet zoomsvelocity =vangleθ=60°
Q: The origins of two frames coincide at t = t' = 0 and the relative speed is 0.993c. Two…
A:
Q: An observer in inertial frame S measures the space and time coordinates of an event to be x=750 m,…
A: From the question, it is given that- x = 750 m, y = 250 m, z = 250 m, and t = 2.0 x 10-6 s Speed of…
Q: SB.5 An event occurs at t = 6.0 s and x = 4.0 s in the Home Frame. The Other Frame is moving in the…
A:
Q: Based on the observer in the S frame, what is the time and distance between the two shots?
A: It consists of relativistic phenomenon. position and time are given in the moving frame. One needs…
Q: System S' has a velocity u = +0.31c relative to system S, as shown in the figure. The clocks of S…
A: We can relate the coordinate of S and S' frames as,
Q: Jose is at rest in System S' that has a velocity u = +0.46c relative to system S, where Cisco is at…
A: x' coordinate of the event is 382 m.Explanation:
Q: = An observer at origin of inertial frame S sees a flashbulb go off at x = 120km, y = 12km, and z…
A: The flashbulb go off at x=120 km. The time for which it go off is 3×10-4 s. The velocity of the…
Q: In a linear collider, two particles travel toward each other from opposite directions before…
A: Given data : In lab frame Speed of electron u =( 2/3 )c Speed of positron v = (3/4) c Where c is…
Q: ame S' moves past frame S with a speed of v₁ = 0.610c. Two students in frame S' with a separation of…
A: Owen and Dina are in the same inertial frame. Thus, the speed of the ball is same for Owen and Dina.…
Q: System S' has a velocity u = +0.31c relative to system S, as shown in the figure. The clocks of S…
A: The objective of the question is to find the x'-coordinate of an event as measured by an observer in…
Q: A rocket of proper length 40 m is observed to be 32 m long as it rushes past the earth. What is its…
A: Given data: Original Length (L0) = 40 m Contracted length (L) = 32 m Required: The speed of the…
Q: A box is cubical with sides of proper lengths L₁ = L₂ = L3 = 1.8 m, as shown in the figure below,…
A:
Q: The origins of two frames coincide at t = t' 0 and the relative speed is 0.993c. Two micrometeorites…
A:
Q: Jose is at rest in System S' that has a velocity u = +0.46c relative to system S, where Cisco is at…
A: The x'- coordinate of the event is 382 m, measured by Jose in S' frame.Explanation:
Q: The origins of two frames coincide at t = t' = 0 and the relative speed is 0.956c. Two…
A: If the relative speed between S and S' frame is v then the Lorentz transformation gives the…
Q: A spacecraft with proper length 600 m travels at speed of ().3c relative to an inertial frame of…
A: thank you
Q: A rod is at rest in frame K' which is moving at some speed in the positive direction along the…
A: Given,Angle is made by the rod having length in the frame from the a-axis,The observer sees from…
Q: is 0.961c. Two micrometeorites collide at coordinates x = 129 km and t = 192 μs according to an…
A: Given:- The origins of the two frames coincide at t = t' = 0 and the relative speed is 0.961c. Two…
Q: The origins of two frames coincide at t = t' = 0 and the relative speed is 0.968c. Two…
A: Special theory of relativity is in regards with space and time. It tells that laws of physics in all…
Q: In our inertial reference frame, we see a particle accelerating with a velocity dx/dt = ( 1 -…
A:
Q: Frame K' moves in the x direction with velocity v relative to frame K. The origins and axes e frames…
A: If we calculate the square of the interval between two events, we can determine whether the interval…
Q: inertial reference frames are proper frames for the two events listed? Choo
A:
Q: For an observer in a reference frame S, two events occur at the same location, with the second event…
A: Given, Reference frame S Two events occur at the same location ∆x = x2-x1=0. The events are…
Q: Identical twins Speedo and Goslo join a migration from Earth to Planet X. Planet X is 20.0…
A:
Q: An observer moving at a speed of 0.995c relative to a rod (see figure below) measures its length to…
A:
Q: Three interconnected rods form a 90-45-45 triangle that reside on the plane x′y ′ of frame O. The…
A:
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images
- In frame S, event B occurs 2 ms after event A and at Dx = 1.5 km from event A. (a) How fast must an observer be moving along the +x axis so that events A and B occur simultaneously? (b) Is it possible for event B to precede event A for some observer?(c) Draw a spacetime diagram that illustrates your answers to (a) and (b). (d) Compute the spacetime interval and proper distance between the events.System S' has a velocity u = +0.33c relative to system S, as shown in the figure. The clocks of S and S' are synchronized at t = t' = 0 when the origins O and O' coincide. An event is observed in both systems. The event takes place at x = 672 m and at time t = 1.6 μs, as measured by an observer in S. What is the x'-coordinate of the event, measured by an observer in S'?Suppose 5 rocketships are all traveling in â in some frame S. The speeds are: St (min) 100 B 0 0.25 0.5 0.75 0.99 7 1 How much time passes on the clocks inside each rocketship if 100 minutes elapse on the stationary rocketship?
- 1) Calculate the interval As 2 between two events with coordinates (x1 = 50 m, y1 = 0, z1 = 0, t1 = 1 us) and (x2 = 120 m, y2 = 0, z2 = 0, t2 = 1.2 µs) in an inertial frame S. 2) Now transform the coordinates of the events into the S0 frame, which is travelling at 0.6c along the x-axis in a positive direction with respect to the frame S. Hence verify that the spacetime interval is invariant.An experimenter has studied the decay of a K° particle in which it emits a 7° at 0.8c. One such K° particle passes the experimenter at 0.5c and decays, emitting a 7° in the original direction of motion. In the experimenter's frame, the speed of the T° is measured to be O 1.3c. O between c and 1.3c. between .5c and .8c. O between .8c and c..The space and time coordinates for two events as measured in a frame S are as follows: Event 1: x1=x0 , t1=x0/c Event 2: x2=2x0, t2=x0/2c a. There exists a frame in which these events occur at the same time. Find the velocity of this frame with respect to S. b. What is the value of t at which both events occur in the new frame?
- Jose is at rest in System S' that has a velocity u = +0.46c relative to system S, where Cisco is at rest. The clocks of S and S' are synchronized at t = t' = 0 when the origins O and O' coincide. An event is observed in both systems. The event takes place at x = 574 m and at time t = 1.70 μs, as measured by Cisco in S. What is the x'-coordinate of the event in meters, measured by Jose in S'? Please give your answer with no decimal places.In the Marvel comics universe, Quicksilver is awfully fast. Let's say he can run at a velocity of 0.56c. He measures a trip as having a distance of 4.60e+05 m. How much time does Quicksilver measure this trip as taking? 2.73e-3 S Does Quicksilver measure the proper or dilated time? 2 proper time v Quicksilver's sister, Wanda Maximoff, is standing stationary near where he is running. How much time does Wanda measure this trip as taking? 3 3.29e-3 S What distance does Wanda measure for Quicksilver's trip? 4 XmA person on Earth observes two rocket ships moving directly toward each other and colliding as shown in the figure below. At time t = 0 in the Earth frame, the Earth observer determines that rocket A, travelling to the right at vA = 0.80c, is at point a, and rocket B is at point b, travelling to the left at vB = 0.60c. According to the Earth observer they are separated by a distance l = 4.2 x 108 m as shown in the other figure. How much time will elapse in frame A from the time rocket A passes point auntil collision?
- You and vouur archenemy pass each other in rockets that are each traveling 0.2c relative to the other. You observe that your rocket (which you have measured to be 281 m Jong ten times as long as your archenemy's spaceship. How long is your rocket in your archenemy's frame? How long is your archenemy's rocket in their frame?A rocket measures 100 m long in its own frame (S') and is travelling at 0.995c relative to a frame S. At the tail of the rocket, a laser sends out a pulse of light which is reflected by a mirror at the nose of the rocket. (a) At what time after emission, measured in S', does the light pulse arrive back at the tail of the rocket? (b) At what time after emission, measured in S, does the light pulse arrive back at the tail of the rocket? (c) What is the spatial distance, measured in S, between the emis- sion of the pulse and its arrival back at the tail of the rocket? (d) At what time after emission, measured in S, does the light pulse hit the mirror? (e) What is the spatial distance, measured in S, between the emis- sion of the pulse and its hitting the mirror? (f) Can you conclude from your answers that the light pulse travelled at a different speed, as seen in S, on its way to the mirror than on the way back? If not, explain your results