An isotope of helium with mass 7 u breaks up from rest into a nucleus of ordinary helium (assume: mass = 5.5 u) plus a neutron (assume: mass = 1.5 u). The rest energy liberated in the break-up is 0.9 MeV, which is shared (not equally) by the products. (a) Using energy and momentum conservation, find the kinetic energy of the neutron. MeV (b) The lifetime of the original nucleus is 2.1 x 10-20 s. What is the minimum width of the range of neutron kinetic energies we would measure in the laboratory as a result of the uncertainty relationship? ev

icon
Related questions
Question
B8
An isotope of helium with mass 7 u breaks up from rest into a nucleus of ordinary helium (assume: mass = 5.5 u) plus a neutron (assume: mass = 1.5 u). The rest energy liberated in
the break-up is 0.9 MeV, which is shared (not equally) by the products.
(a) Using energy and momentum conservation, find the kinetic energy of the neutron.
MeV
(b) The lifetime of the original nucleus is 2.1 x 10-20 s. What is the minimum width of the range of neutron kinetic energies we would measure in the laboratory as a result of the
uncertainty relationship?
ev
Transcribed Image Text:An isotope of helium with mass 7 u breaks up from rest into a nucleus of ordinary helium (assume: mass = 5.5 u) plus a neutron (assume: mass = 1.5 u). The rest energy liberated in the break-up is 0.9 MeV, which is shared (not equally) by the products. (a) Using energy and momentum conservation, find the kinetic energy of the neutron. MeV (b) The lifetime of the original nucleus is 2.1 x 10-20 s. What is the minimum width of the range of neutron kinetic energies we would measure in the laboratory as a result of the uncertainty relationship? ev
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer