An individual picked at random from a population has a propensity to have accidents that is modelled by a random variable Y having the gamma distribution with shape parameter α and rate parameter β. Given Y = y, the number of accidents that the individual suffers in years 1, 2, . . . , n are independent random variables X1, X2, . . . Xn each having the Poisson distribution with parameter y. (a) Write down a function f so that the joint distribution of Y, X1, . . . , Xn can be described via P(a ≤ Y ≤ b, X1 = k1, X2 = k2 . . . Xn = kn) = Z b a f(y, k1, k2, . . . kn)dy and derive from this expression that, for your choice of f, Y has the Gamma distribution, and that conditionally on Y = y, X1, X2, . . . Xn are independent, each having the Poisson distribution with parameter y. (b) Find the conditional distribution of Y given that X1 = k1, X2 = k2, . . . , kn. (c) An insurance company has observed the number of accidents that an individual has suffered on each of n years and wishes to predict the number of accidents that individual will experience in the next year. To this end let Xn+1 be a further random variable so that, conditionally on Y = y, X1, X2, . . . Xn, Xn+1 are independent, each having the Poisson distribution with parameter y. Write down the value of the conditional expectation E[Xn+1|X1, X2, . . . Xn, Y ], and hence determine E[Xn+1|X1, X2, . . . Xn].

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

4.4. An individual picked at random from a population has a propensity to have accidents that is modelled by a random variable Y having the gamma distribution with shape parameter α and rate parameter β. Given Y = y, the number of accidents that the individual suffers in years 1, 2, . . . , n are independent random variables X1, X2, . . . Xn each having the Poisson distribution with parameter y.

(a) Write down a function f so that the joint distribution of Y, X1, . . . , Xn can be described via P(a ≤ Y ≤ b, X1 = k1, X2 = k2 . . . Xn = kn) = Z b a f(y, k1, k2, . . . kn)dy and derive from this expression that, for your choice of f, Y has the Gamma distribution, and that conditionally on Y = y, X1, X2, . . . Xn are independent, each having the Poisson distribution with parameter y.

(b) Find the conditional distribution of Y given that X1 = k1, X2 = k2, . . . , kn.

(c) An insurance company has observed the number of accidents that an individual has suffered on each of n years and wishes to predict the number of accidents that individual will experience in the next year. To this end let Xn+1 be a further random variable so that, conditionally on Y = y, X1, X2, . . . Xn, Xn+1 are independent, each having the Poisson distribution with parameter y. Write down the value of the conditional expectation E[Xn+1|X1, X2, . . . Xn, Y ], and hence determine E[Xn+1|X1, X2, . . . Xn].

Expert Solution
steps

Step by step

Solved in 5 steps with 46 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman