An equation of the tangent plane to the surface y = 3 x? - z? at the point (-2,8,2) is: (A) 12 (x + 2) + (y - 8) – 4 (z – 2) = 0 (B) 12 (x + 2) + (y - 8) +4 (z – 2) = 0 (C) 12 (x + 2) – (y-8) +4 (z + 2) = 0 (D) 12 (x + 2) + (y-8) – 4 (z+ 2) = 0 (E) 12 (x + 2) + (y – 8) – (z – 2) = 0 A

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
An equation of the tangent plane to the surface
y = 3 x2 - z? at the point (-2,8,2) is:
(A) 12 (x + 2) + (y - 8) – 4 (z – 2) = 0
(B) 12 (x + 2) + (y - 8) + 4 (z – 2) = 0
(C) 12 (x + 2) – (y- 8) + 4 (z + 2) = 0
(D) 12 (x + 2) + (y- 8) – 4 (z + 2) = 0
(E) 12 (x + 2) + (y – 8) – (z – 2) = 0
A
В
C
D
E
Transcribed Image Text:An equation of the tangent plane to the surface y = 3 x2 - z? at the point (-2,8,2) is: (A) 12 (x + 2) + (y - 8) – 4 (z – 2) = 0 (B) 12 (x + 2) + (y - 8) + 4 (z – 2) = 0 (C) 12 (x + 2) – (y- 8) + 4 (z + 2) = 0 (D) 12 (x + 2) + (y- 8) – 4 (z + 2) = 0 (E) 12 (x + 2) + (y – 8) – (z – 2) = 0 A В C D E
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Implicit Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,