An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.
An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The