An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.

a A
blai
A A x X2 abe v UIB
سق
HW # 1
Q1
An empirical equation for calculating the inside heat transfer coefficient, h; , for the
turbulent flow of liquids in a pipe is given by:
0.023 G0.8 K0.67 Cp0.33
hị
D0.2 µ0.47
where h;= heat transfer coefficient, Btu/(hr)(ft(°F)
G=mass velocity of the liquid, lbm/(hr)(ft)2
K= thermal conductivity of the liquid, Btu/(hr)(ft)(F)
Cp%3Dheat capacity of the liquid, Btu/(lbm)(°F)
H=Viscosity of the liquid, lbm/(ft)(hr)
D= inside diameter of the pipe, (ft)
%3D
Verify if the equation is dimensionally consistent.
Q2.
Convert the following quantities to the ones designated:
a) 1.8 nanometer (nm) to decimeter (dm)
Transcribed Image Text:a A blai A A x X2 abe v UIB سق HW # 1 Q1 An empirical equation for calculating the inside heat transfer coefficient, h; , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h;= heat transfer coefficient, Btu/(hr)(ft(°F) G=mass velocity of the liquid, lbm/(hr)(ft)2 K= thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp%3Dheat capacity of the liquid, Btu/(lbm)(°F) H=Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) %3D Verify if the equation is dimensionally consistent. Q2. Convert the following quantities to the ones designated: a) 1.8 nanometer (nm) to decimeter (dm)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The