An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.
An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
An empirical equation for calculating the inside heat transfer coefficient, hi , for the turbulent flow of liquids in a pipe is given by: 0.023 G0.8 K0.67 Cp0.33 hị D0.2 µ0.47 where h; = heat transfer coefficient, Btu/(hr)(ft>(°F) G=mass velocity of the liquid, lbm/(hr)(ft)² K = thermal conductivity of the liquid, Btu/(hr)(ft)(F) Cp = heat capacity of the liquid, Btu/(lbm)(°F) u= Viscosity of the liquid, lbm/(ft)(hr) D= inside diameter of the pipe, (ft) Verify if the equation is dimensionally consistent.
![a A
blai
A A x X2 abe v UIB
سق
HW # 1
Q1
An empirical equation for calculating the inside heat transfer coefficient, h; , for the
turbulent flow of liquids in a pipe is given by:
0.023 G0.8 K0.67 Cp0.33
hị
D0.2 µ0.47
where h;= heat transfer coefficient, Btu/(hr)(ft(°F)
G=mass velocity of the liquid, lbm/(hr)(ft)2
K= thermal conductivity of the liquid, Btu/(hr)(ft)(F)
Cp%3Dheat capacity of the liquid, Btu/(lbm)(°F)
H=Viscosity of the liquid, lbm/(ft)(hr)
D= inside diameter of the pipe, (ft)
%3D
Verify if the equation is dimensionally consistent.
Q2.
Convert the following quantities to the ones designated:
a) 1.8 nanometer (nm) to decimeter (dm)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff6d87ff9-cefd-45e2-9ddc-bb592f1b2775%2F908d988f-e008-465b-a60b-ca61396ad3ff%2F88wc8yn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:a A
blai
A A x X2 abe v UIB
سق
HW # 1
Q1
An empirical equation for calculating the inside heat transfer coefficient, h; , for the
turbulent flow of liquids in a pipe is given by:
0.023 G0.8 K0.67 Cp0.33
hị
D0.2 µ0.47
where h;= heat transfer coefficient, Btu/(hr)(ft(°F)
G=mass velocity of the liquid, lbm/(hr)(ft)2
K= thermal conductivity of the liquid, Btu/(hr)(ft)(F)
Cp%3Dheat capacity of the liquid, Btu/(lbm)(°F)
H=Viscosity of the liquid, lbm/(ft)(hr)
D= inside diameter of the pipe, (ft)
%3D
Verify if the equation is dimensionally consistent.
Q2.
Convert the following quantities to the ones designated:
a) 1.8 nanometer (nm) to decimeter (dm)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introduction to Chemical Engineering Thermodynami…](https://www.bartleby.com/isbn_cover_images/9781259696527/9781259696527_smallCoverImage.gif)
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
![Elements of Chemical Reaction Engineering (5th Ed…](https://www.bartleby.com/isbn_cover_images/9780133887518/9780133887518_smallCoverImage.gif)
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
![Introduction to Chemical Engineering Thermodynami…](https://www.bartleby.com/isbn_cover_images/9781259696527/9781259696527_smallCoverImage.gif)
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
![Elementary Principles of Chemical Processes, Bind…](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
![Elements of Chemical Reaction Engineering (5th Ed…](https://www.bartleby.com/isbn_cover_images/9780133887518/9780133887518_smallCoverImage.gif)
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
![Process Dynamics and Control, 4e](https://www.bartleby.com/isbn_cover_images/9781119285915/9781119285915_smallCoverImage.gif)
![Industrial Plastics: Theory and Applications](https://www.bartleby.com/isbn_cover_images/9781285061238/9781285061238_smallCoverImage.gif)
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
![Unit Operations of Chemical Engineering](https://www.bartleby.com/isbn_cover_images/9780072848236/9780072848236_smallCoverImage.gif)
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The