An empirical equation for calculating the inside heat transfer coefficient (h) for the turbulent flow of liquid in a pipe as shown in the equation mentioned below. G0.8 K0.67 Cp0,33 D0.2 0.47 hi = 0.023- Where: O G- mass velocity of the liquid. [G]- lbm/(hr{fA o K- thermal conductivity of the tiquid, [K] - Btu/(hr{ftX°F) o Cp= heat capacity of the liquid. [Cp] = Bru(lbmX°F) a u= viscosity of the liquid, fa} = lbm/(fi)(hr) O D- inside diameter of the pipe. [D] ft If the unit of the inside heat transfer coefficient (h,) is Btu/(hr)X°F(fi}?, verify if the cquation is dimensional consistent.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
An empirical equation for calculating the inside heat transfer coefficient (hi) for the turbulent flow of liquid in a pipe as shown in the equation mentioned below
36 / 38
Dimensional consistency
Example:
An empirical cquation for calculating the inside heat transfer coefficient (h)
for the turbulent flow of liquid in a pipe as shown in the equation mentioned
below.
G0.8 K0.67 Cp0,33
D0.2 0.47
hi = 0.023
Where:
OG- mass velocity of the liquid, [G] lbm/(hr)(A)
Q K- thermal conductivity of the tiquid, [K) - Btu/thr){ftx°F)
o Cp = heat capacity of the liquid. [Cp) = Bru (lbmX°F)
a u= viscosity of the liquid, fu) = Ibm/(fi(hr)
O D- inside diameter of the pipe. [D] ft
%3D
If the unit of the inside heat transfer coefficient (h,) is Bru/(hr)( F)(fi), verify if the
equation is dimensional consistent.
Transcribed Image Text:36 / 38 Dimensional consistency Example: An empirical cquation for calculating the inside heat transfer coefficient (h) for the turbulent flow of liquid in a pipe as shown in the equation mentioned below. G0.8 K0.67 Cp0,33 D0.2 0.47 hi = 0.023 Where: OG- mass velocity of the liquid, [G] lbm/(hr)(A) Q K- thermal conductivity of the tiquid, [K) - Btu/thr){ftx°F) o Cp = heat capacity of the liquid. [Cp) = Bru (lbmX°F) a u= viscosity of the liquid, fu) = Ibm/(fi(hr) O D- inside diameter of the pipe. [D] ft %3D If the unit of the inside heat transfer coefficient (h,) is Bru/(hr)( F)(fi), verify if the equation is dimensional consistent.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Convective Heat Transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The