An ellipse is an oval-shaped closed curve. The area of an ellipse is approximately 3.14ab, where a is its length and b is its width. Find the polynomial that approximates the total area of both elliptical- shaped lenses of the sunglasses shown. (Assume c = 1. Simplify your answer completely.) (x– C) in. (x + c) in.
An ellipse is an oval-shaped closed curve. The area of an ellipse is approximately 3.14ab, where a is its length and b is its width. Find the polynomial that approximates the total area of both elliptical- shaped lenses of the sunglasses shown. (Assume c = 1. Simplify your answer completely.) (x– C) in. (x + c) in.
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Concept explainers
Transformation of Graphs
The word ‘transformation’ means modification. Transformation of the graph of a function is a process by which we modify or change the original graph and make a new graph.
Exponential Functions
The exponential function is a type of mathematical function which is used in real-world contexts. It helps to find out the exponential decay model or exponential growth model, in mathematical models. In this topic, we will understand descriptive rules, concepts, structures, graphs, interpreter series, work formulas, and examples of functions involving exponents.
Question

Given data from the diagram:
- Length of each lens (major axis): \((x + c)\) inches
- Width of each lens (minor axis): \((x - c)\) inches
### Steps to Calculate the Area
1. **Calculate the Area of One Lens:**
The area \(A\) of an ellipse can be calculated using the formula:
\[
A = 3.14 \times a \times b
\]
For one lens,
\[
A_{\text{one lens}} = 3.14 \times (x + c) \times (x - c)
\]
2. **Simplify the Area Formula:**
Using the difference of squares identity \((a + b)(a - b) = a^2 - b^2\),
\[
A_{\text{one lens}} = 3.14 \times (x^2 - c^2)
\]
Given \(c = 1\),
\[
A_{\text{one lens}} = 3.14 (x^2 - 1^2) = 3.14 (x^2 - 1)
\]
3. **Calculate the Total Area for Both Lenses:**
Since there are two lenses,
\[
A_{\text{total}} = 2 \times A_{\text{one lens}} = 2 \times 3.14 (x^2 - 1)
\]
Simplifying this,
\[
A_{\text{total}} = 6.28 (x^2 - 1) \quad \text{square inches}
\]
### Conclusion
The polynomial that approximates the total area of both elliptical-shaped lenses is:
\[
6.28 (x^2 - 1)
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcfa510ce-a779-4198-b3d3-c9e941c192c9%2F36889d39-76ca-44c6-a7b7-0bbd388046df%2F7lpa9wwu_processed.png&w=3840&q=75)
Transcribed Image Text:### Understanding the Area of Ellipses
An ellipse is an oval-shaped closed curve. The area of an ellipse is approximately \(3.14 \times a \times b\), where \(a\) is its length and \(b\) is its width. Let's find the polynomial that approximates the total area of both elliptical-shaped lenses of the sunglasses shown in the diagram.
**Assumption:** Assume \(c = 1\). Simplify your answer completely.

Given data from the diagram:
- Length of each lens (major axis): \((x + c)\) inches
- Width of each lens (minor axis): \((x - c)\) inches
### Steps to Calculate the Area
1. **Calculate the Area of One Lens:**
The area \(A\) of an ellipse can be calculated using the formula:
\[
A = 3.14 \times a \times b
\]
For one lens,
\[
A_{\text{one lens}} = 3.14 \times (x + c) \times (x - c)
\]
2. **Simplify the Area Formula:**
Using the difference of squares identity \((a + b)(a - b) = a^2 - b^2\),
\[
A_{\text{one lens}} = 3.14 \times (x^2 - c^2)
\]
Given \(c = 1\),
\[
A_{\text{one lens}} = 3.14 (x^2 - 1^2) = 3.14 (x^2 - 1)
\]
3. **Calculate the Total Area for Both Lenses:**
Since there are two lenses,
\[
A_{\text{total}} = 2 \times A_{\text{one lens}} = 2 \times 3.14 (x^2 - 1)
\]
Simplifying this,
\[
A_{\text{total}} = 6.28 (x^2 - 1) \quad \text{square inches}
\]
### Conclusion
The polynomial that approximates the total area of both elliptical-shaped lenses is:
\[
6.28 (x^2 - 1)
\]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education