An convergence of

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Determine the convergence of
An where
1
аn — 1 — соs
n
Using br =
An
we find that lim
br
1
n
n→∞
1 and since bn
is (D), we conclude that an is (D) by
the LCT.
None of the given options is correct.
Using br
1
we find that 1lim
n2
br
n→∞
1
and since bn is (C), we conclude
that an is (C) by the LCT
Using bn
1
we find that
1
1
and since bn is (D), we
-
n
An
lim
n→∞ b,
2
conclude that > an is (D) by the LCT.
An
we find that lim
n→∞ bn
1
Using b,
n2
1 and since b, is (C), we conclude that
Ean is (C) by the LCT.
Transcribed Image Text:Determine the convergence of An where 1 аn — 1 — соs n Using br = An we find that lim br 1 n n→∞ 1 and since bn is (D), we conclude that an is (D) by the LCT. None of the given options is correct. Using br 1 we find that 1lim n2 br n→∞ 1 and since bn is (C), we conclude that an is (C) by the LCT Using bn 1 we find that 1 1 and since bn is (D), we - n An lim n→∞ b, 2 conclude that > an is (D) by the LCT. An we find that lim n→∞ bn 1 Using b, n2 1 and since b, is (C), we conclude that Ean is (C) by the LCT.
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Optimization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,