An astrophysicist working at an observatory is interested in finding clouds of hydrogen in the galaxy. Usually hydrogen is detected by looking for the Balmer series of spectral lines in the visible spectrum. Unfortunately, the instrument that detects hydrogen emission spectra at this particular observatory is not working very well and only detects spectra in the infrared region of electromagnetic radiation. Therefore the astrophysicist decides to check for hydrogen by looking at the Paschen series, which produces spectral lines in the infrared part of the spectrum. The Paschen series describes the wavelengths of light emitted by the decay of electrons from higher orbits to the n=3 level. What wavelength λ should the astrophysicist look for to detect a transition of an electron from the n=5 to the n=3 level?
Atomic Structure
The basic structure of an atom is defined as the component-level of atomic structure of an atom. Precisely speaking an atom consists of three major subatomic particles which are protons, neutrons, and electrons. Many theories have been stated for explaining the structure of an atom.
Shape of the D Orbital
Shapes of orbitals are an approximate representation of boundaries in space for finding electrons occupied in that respective orbital. D orbitals are known to have a clover leaf shape or dumbbell inside where electrons can be found.
An astrophysicist working at an observatory is interested in finding clouds of hydrogen in the galaxy. Usually hydrogen is detected by looking for the Balmer series of spectral lines in the visible spectrum. Unfortunately, the instrument that detects hydrogen
What wavelength λ should the astrophysicist look for to detect a transition of an electron from the n=5 to the n=3 level?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images