An astronaut on the Moon (g=1.62 m/s2) throws a rock from the ground level with a speed of 32.1 km/h directly upwards. Determine the time after which the rock reaches the height equal to three quarters of its maximum height on the way down.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
An astronaut on the Moon (g=1.62 m/s2) throws a rock from the ground level with a speed of 32.1 km/h directly upwards. Determine the time after which the rock reaches the height equal to three quarters of its maximum height on the way down.
Provide your answer with the precision of two places after the decimal.
Step by step
Solved in 3 steps with 2 images