An astronaut is being tested in a centrifuge. The centrifuge has a radius of 9.10 m and, in starting, rotates according to θ = 0.390t2, where t is in seconds and θ is in radians. When t = 2.60 s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration? (a) Number Enter your answer for part (a) in accordance to the question statement Units Choose the answer for part (a) from the menu in accordance to the question statement radrad/srad/s^2kg·m^2N·mkg·m^2/srad^2/s^2 (b) Number Enter your answer for part (b) in accordance to the question statement Units Choose the answer for part (b) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times (c) Number Enter your answer for part (c) in accordance to the question statement Units Choose the answer for part (c) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times (d) Number Enter your answer for part (d) in accordance to the question statement Units Choose the answer for part (d) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times
An astronaut is being tested in a centrifuge. The centrifuge has a radius of 9.10 m and, in starting, rotates according to θ = 0.390t2, where t is in seconds and θ is in radians. When t = 2.60 s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration? (a) Number Enter your answer for part (a) in accordance to the question statement Units Choose the answer for part (a) from the menu in accordance to the question statement radrad/srad/s^2kg·m^2N·mkg·m^2/srad^2/s^2 (b) Number Enter your answer for part (b) in accordance to the question statement Units Choose the answer for part (b) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times (c) Number Enter your answer for part (c) in accordance to the question statement Units Choose the answer for part (c) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times (d) Number Enter your answer for part (d) in accordance to the question statement Units Choose the answer for part (d) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times
An astronaut is being tested in a centrifuge. The centrifuge has a radius of 9.10 m and, in starting, rotates according to θ = 0.390t2, where t is in seconds and θ is in radians. When t = 2.60 s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration? (a) Number Enter your answer for part (a) in accordance to the question statement Units Choose the answer for part (a) from the menu in accordance to the question statement radrad/srad/s^2kg·m^2N·mkg·m^2/srad^2/s^2 (b) Number Enter your answer for part (b) in accordance to the question statement Units Choose the answer for part (b) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times (c) Number Enter your answer for part (c) in accordance to the question statement Units Choose the answer for part (c) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times (d) Number Enter your answer for part (d) in accordance to the question statement Units Choose the answer for part (d) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times
An astronaut is being tested in a centrifuge. The centrifuge has a radius of 9.10 m and, in starting, rotates according to θ = 0.390t2, where t is in seconds and θ is in radians. When t = 2.60 s, what are the magnitudes of the astronaut's (a)angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?
(a)
Number
Enter your answer for part (a) in accordance to the question statement
Units
Choose the answer for part (a) from the menu in accordance to the question statement radrad/srad/s^2kg·m^2N·mkg·m^2/srad^2/s^2
(b)
Number
Enter your answer for part (b) in accordance to the question statement
Units
Choose the answer for part (b) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times
(c)
Number
Enter your answer for part (c) in accordance to the question statement
Units
Choose the answer for part (c) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times
(d)
Number
Enter your answer for part (d) in accordance to the question statement
Units
Choose the answer for part (d) from the menu in accordance to the question statement This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times
Definition Definition Rate of change of angular displacement. Angular velocity indicates how fast an object is rotating. It is a vector quantity and has both magnitude and direction. The magnitude of angular velocity is represented by the length of the vector and the direction of angular velocity is represented by the right-hand thumb rule. It is generally represented by ω.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.